STRUCTURAL TRANSFORMATIONS OF CARBON NANOMATERIAL UNDER INFLUENCE OF HIGH ENERGY LASER IRRADIATION
Abstract
Laser pulse irradiation of the globular turbostratic carbon material in various conditions was carried out in this work. It was investigated by TEM that the formation of nanostructured particles (nanocapsules) during irradiation at 1064 nm wavelength occurs with power density of 108 W/cm2, and it’s rise up to 1011 W/cm2 leads to increase the degree of ordering of the obtained structures. It is shown that irradiation of the initial globules with pulses at 532 nm wavelength allows to reduce the interplanar spacing of graphene layers from 0,410 nm to 0,346 nm in the formed nanocapsules. The dependence of the maximum heating temperature of nanoparticles on the energy density on the laser spot was analyzed. The influence of the heating temperature of the carbon nanomaterial on structure and morphology was stated.
References
Endo M., Iijima S., Dresselhaus M.S. Carbon Nanotubes. Pergamon Press. 1996. p. 153–162.
McDonough J.K., Gogotsi Y. The Electrochemical Society Interface. 2013. v. 22. № 3. p. 61–66.
Mosenkov S.I. Sintez i issledovaniye svoystv ugleroda lukovichnoy struktury i yego kompozitov. Avtoref. diss. kand. khim. nauk. Novosibirsk. 2014. 3 p.
Bulgakov A.M., Bulgakov N.M., Burakov I.M. and et al. Sintez nanorazmernykh materialov pri vozdeystvii moshchnykh potokov energii na veshchestvo. Novosibirsk. Institute of Thermophysics SB RAS, 2009. 462 p.
Trenikhin M.V., Ivashchenko O.V., Eliseev V.S., et al. Fullerenes, Nanotubes and Carbon Nanostructures. 2015.v. 23. p. 801–806.
Trenikhin M.V., Kryazhev Yu.G., Protasova O.V. et al. International Multidisciplinary Microscopy Congress. Springer Proceedings in Physics. 2014. Ch. 21. р. 159–164.
Vander Wal R. L., Choi M. Y. Carbon. 1999. v. 37. № 2. p. 231–239.
Shengliang Hu., Tian F., Bai P., Cao S., Sun J. Сarbon. 2009. v. 47. № 3. p.876–883.
Kwong H. Y., Wong M. H., Leung C. W. et al. J. Appl. Phys. 2010. v. 108. № 3. 034304.
Hu S., Dong Y., Yang J. et al. Chem. Asian J. 2012. v. 7. p. 2711–2717.
Hu S., Dong Y., Yang J. et al. J. Mater. Chem. 2012. v. 22. p. 1957–1961.
Amendola V., Meneghetti M. Phys. Chem. Chem. Phys. 2013. v. 15. p. 3027–3046.
Kim D., Ye M., Grigoropoulos C.P. Appl. Phys. A. 1998. v. 67. № 2. p. 169–181.
Miyazaki M., Miura Y., Yui K. et al. Carbon. 2006. v. 44. № 15. p. 3348–3378.
Kroto H.W. Science. 1988. v. 242. 1139 p.
Saito Y. Carbon. 1995. v. 33. №7. p. 979–988.
Lozovik Y.E., Popov A.M. Uspekhi fizicheskikh nauk. 1997. v. 167. № 7. p. 751–772.
Trenikhin M.V., Kryazhev Y.G., Protasova O.V., Drozdov V.A., Likholobov V.A., Koval' N.N., Teresov A.D. International Polymer Science and Technology. 2014. v. 40. № 12. p. T21-T24.
Yamada K., Tobisawa S. Carbon. 1989. v. 27. № 6. p. 845–852
Oshida K., Nakazawa T., Miyazaki T. et al. Synthetic Metals. 2002. v. 125. № 2. p. 223 – 230.
Zhu W., Miser D.E., Chan W.G., Hajaligol M.R. Carbon. 2004. v. 42. № 8–9. p. 1841–1845.
Muller J.O. Su D. S. et al. Phys. Chem. Chem. Phys. 2007. v. 9. p. 4018–4025.
Openov L.A., Podlivaev A.I. Physics of the Solid State. 2016. v. 58. № 4. p. 847-852.
M. Necati Ozisik Radiative transfer and interactions with conduction and convection. John Wiley, 1973. p. 90–94.
Bloch A.G. Teploobmen v topkakh parovykh kotlov. Leningrad. Energoatomizdat. 1984. 119 p.
Gurentsov Ye.V., Yeremin A.V., Fal'chenko M.G. Fiziko-khimicheskaya kinetika v gazovoy dinamike. 2011. v. 11. p. 1–8.
Panchenko M.V., Kozlov V.S., et al. Optika atmosfery i okeana. 2012 v. 25. № 1. p. 46–54.
Snelling D.R., Liu F. et al. Combustion and Flame. 2004. v. 136. № 1–2. p. 180–190.
Gurentsov Ye.V., Yeremin A.V., Popova Ye.YU. et al. Fiziko-khimicheskaya kinetika v gazovoy dinamike. 2013. v. 14. №2. p. 1–8.
Rayzer Yu. P. Uspekhi fizicheskikh nauk. 1965. v. 87. № 1. p. 29-64.