ENERGY-SAVING PLANT FOR PROCESSING ORGANIC WASTE INTO FUEL AND ADSORBENTS

  • В. Г. Сотников ФГБОУ ВО "КНИТУ"
  • Сафин Р. Г. ФГБОУ ВО «КНИТУ»
Keywords: organic waste, pyrolysis gases, liquid fuels, adsorbents, exothermic process, endothermic process, energy conservation, resource conservation

Abstract

The goal of the work is to develop an energy-independent and resource-saving method for the pyrogenetic processing of organic waste, based on the principle of using the thermal energy of high-calorie combustible gases obtained from the decomposition of organic waste, with the production of the final product in the form of liquid fuel and adsorbents. The goal is achieved by solving the following problems: constructing a mathematical model of the process of pyrogenetic decomposition of waste; experimental studies on pyrolysis and activation of waste: timber industry, agriculture, chemical and textile industries; mathematical modeling of the waste decomposition process. The most important results of the work are: the developed mathematical model of the pyrolysis process; obtained and analyzed kinetic dependences of changes in the mass of dry residue, liquid and gaseous phases. It has been shown that for solid organic waste the average decomposition time is 90 minutes, while the waste loses about 70% of its original mass, on average 45% of the initial mass is condensate of pyrolysis gases - liquid fuel, the rest is high-calorie flammable gas. It has been shown that upon activation, the dry residue loses 53% of its mass; the separated part consists of activation gases, which are flammable gases. A technological scheme for the thermochemical processing of organic waste into liquid fuel and solid adsorbent is presented. The most significant results of the work are the possibility of using a mathematical model built on the equations of chemical kinetics to simulate the process of pyrogenetic decomposition of a bulk layer of waste. It was also found that the processing time for food, wood, and synthetic waste varies; when all components are removed from the carbon component of the residue mass, it decreases to extremely small values; this observation makes it possible to create a single temperature regime for waste with different chemical compositions and, as a result, to develop a unified methodology calculation of energy-saving hardware design.

References

Safin R.G., Sotnikov V.G. News of higher educational institu-tions. Textile industry technology. 2023. N 3(405). P. 209–216. DOI:10.47367/0021-3497_2023_3_209.

Safin R.G., Sotnikov V.G., Ziatdinova D.F. News of higher educational institutions. Textile industry technology. 2021. N 5(395). P. 229–235. DOI 10.47367/0021-3497_2021_5_229.

Safin R., Sotnikov V., Ziatdinova D. Ecology and industry of Russia. 2023. 27(11). P. 9–14. DOI: 10.18412/1816-0395-2023-11-9-14.

Golubev E., Suslova E., Lebedev A. Russian Chemical Jour-nal. 2023. 67(2) P. 37–44. DOI: 10.6060/rcj.2023672.4.

Aleksanian K.G., Valiev A.I., Sukhareva N.M., Agadzhanian S.A. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. 66(12). P. 25–31. DOI: 10.6060/ ivkkt.20236612.6897.

Kolobov M., Vorobyov S., Mironov E., Kuvaeva E., Sakh-arov S., Kolobova V. Russian Chemical Journal. 2023. 67(1). P. 64–69. DOI: 10.6060/rcj.2023671.9.

Samonin V., Podvyaznikov M., Spiridonova E., Khrylova E., Khokhlache S., Garabadzhiu A. Russian Chemical Journal. 2022. 66(3). P. 61–69. DOI: 10.6060/10.6060/rcj.2022663.9

Chistyakova T., Novozhilova I., Meshalkin V., Paukin O. Russian Chemical Journal. 2022. 66(3). P. 70–78. DOI: 10.6060/10.6060/rcj.2022663.10.

Farberova E.A., Pershin E.A., Maksimov A.S., Khodyashev N.B., Smirnov S.A., Kuz’minykh K.G. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 6. P. 102–110. DOI: 10.6060/ivkkt.20236606.6776.

Safin R.G., Sotnikov V.G., Ziatdinova D.F. Lecture Notes in Me-chanical Engineeringthis link is disabled. 2023. P. 809–818.

Safin R.G., Sotnikov V.G. E3S Web Conf. 2023. 420. 07005. DOI: 10.1051/e3sconf/202342007005.

Safin R.G., Sotnikov V.G. E3S Web Conf. 2023. 420. 09006. DOI: 10.1051/e3sconf/202342009006.

Safin R.G., Ziatdinov R.R., Sotnikov V.G., Ryabushkin D.G. Russian Engineering Research this link is disabled. 2022. 42(9). P. 867–870.

Agrafioti E., Bouras G., Kalderis D., Diamadopoulos E. Journal of Analytical and Applied Pyrolysis. 2013. V. 101. P. 72–78.

Liu Z., Hughes M., Tong Y., Zhou J., Kreutter W., Valtierra D., Singer S., Zitomer D., McNamara P. Renewable Energy. 2021. V. 177. P. 1–11. 16. Bridle T.R., Pritchard D. Water Science and Technology. 2004. V. 50. P. 169–175.

Carey D.E., McNamara P.J., Zitomer D.H. Water Environ-ment Research. 2015. V. 87. P. 2098–2106.

Lewandowski W.M., Radziemska E., Ryms M., Ostrowski P. Ecological Chemistry and Engineering S. 2011. V. 18. P. 39–47. 19. Tremel A., Becherer D., Fendt S., Gaderer M., Spliethoff H. En-ergy Conversion and Management. 2013. V. 69. P. 95–106.

Umeki K., Häggström G., Bach-Oller A., Kirtania K., Furusjö E. Energy and Fuels. 2017. V. 31. P. 5104–5110. 21. Trubetskaya A., Souihi N., Umeki K. Renewable Energy. 2019. V. 141. P. 751–759.

Ozkan A., Kinney K., Katz L., Berberoglu H. Bioresource Technology. 2012. V. 114. P. 542–548.

Uchimiya, M., Wartelle, L.H., Klasson, T., Fortier, C.A., Lima, I.M. J. Agric. Food Chem. 2011. 59. P. 2501–2510.

Kuzyakov Y., Subbotina I., Chen H., Bogomolova I., Xu X. Soil Biol. Biochem. 2009. 41. P. 210–219.

Chen J., Zhu D., Sun C. Environ. Sci. Technol. 2007. 41. P. 2536–2541.

Chen B., Zhou D., Zhu L. Environ. Sci. Technol. 2008. 42. P. 5137–5143.

Chen B., Chen Z., Lv S. Bioresour. Technol. 2011. 102. P. 716–723.

Chen X., Chen G., Chen L., Chen Y., Lehmann J., McBride M.B., Hay A.G. Bioresour. Technol. 2011. 102. P. 8877–8884.

Published
2023-12-22
How to Cite
Сотников, В., & Г., С. (2023). ENERGY-SAVING PLANT FOR PROCESSING ORGANIC WASTE INTO FUEL AND ADSORBENTS. Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal), 67(3), 17-24. https://doi.org/10.6060/rcj.2023673.3
Section
Статьи