Hydrate -anion complex of proton [H(H2O)n]+А− as the basis of the complex acidity function of aqueous solutions of strong mineral acids in excess of water

  • С. Н. Иванов ИвГУ
  • В. А. Козлов ИГХТУ
  • Т. Е. Никифорова ИГХТУ
  • О. И. Койфман ИГХТУ
  • Д. Ф. Пырэу ИвГУ
Keywords: proton, acidity function, excess acidity, proton hydrated complex

Abstract

Based on the concept of the proton hydrate-anion complex [H(H2O)n]+A, equations are proposed that characterize the catalytic activity of the proton in aqueous solutions of three acids: sulfuric, hydrochloric, and chloric. The equations are based on the linear dependence of the value of "excessive acidity" on the logarithm of the relative stoichiometric concentration of water Х=f(log ) in acid solutions with a predominance of water (Н2О/НА>1). Using the directly proportional dependence of the Hammett function (- ) on the sum of parameters (log +m*∙Х), two-parameter equations were obtained for calculating the complex function of acidity - = log + Blog  (standard state - pure water , ). The equations make it possible to calculate the function  at a given acid concentration, having only data on the concentrations of the proton  and water , i.e. avoiding the use of the ratio of the activity coefficients of the components included in parameter X. The function  collectively reflects the participation of proton and water in the acidity of the medium, practically reproduces the experimental values of  obtained by different authors in the concentration range from pure water to 68 wt.% (H2SO4 ), 40% (HCl), 70% (HClO4), combines the pH and  scales. It is concluded that the Blog  contribution, which characterizes the participation of water in the hydration shells of ions, is determined by their nature and plays no less important role in characterizing the acidity of the medium than the proton itself. The final tables of the concentration dependence of the values  for each of the acids are given. The work is of a review and methodological nature, since it is based on a critical analysis of experimental literature data.

References

Smith M. B., March J. March’s Advanced Organic Chemistry Reactions, Mechanisms and Structure, 6th ed.; Wiley: New York, 2006; Chapter 11;

Chorkendorff, I., Niemantsverdriet, J.W. Concepts of Modern Catalysis and Kinetics. Third Completely Revised and Enlarged Edition.© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469. ISBN 978-3-527-332687.Weinheim. Germany. 524 p.

Berezin D.B., Shuhto O.V., Syrbu S.A., Koifman O.I. Organicheskaya khimiya. Bazovyj kurs. Izd. "Lan'" ISBN 978-5-8114-1604-2. 2014 g. 2-e izd., ispr. i dop. 240 p.

Klumpp D. A. Electrophilic Aromatic Substitution in Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds (ed. J. Mortier), John Wiley & Sons, Inc, Hoboken, New Jersey. Publ. in Canada. 2016. 992 p.

Stuyver Th., Danovich D., De Proft F., Shaik S. J.Am.Chem.Soc. 2019. 141. 24. 9719–9730. DOI: 10.1021/jacs.9b04982.

Marx D., Tuckerman M.E., Hutter J., Parrinello M. Nature. 1999. V. 397. P. 601−604. DOI: 10.1038/17579.

Silverstein T.P. J. Chem. Educ. 2011. V. 88 P. 875. DOI: 10.1021/ed1010213.

Knight C., Voth G.A. Acc. Chem. Res. 2012. V. 45. P. 101–109. DOI: 10.1021/ar200140h.

Reed C.A. Acc. Chem. Res. 2013. V. 46. P. 2567–2575. DOI: 10.1021/ar400064q.

Peng Y., Swanson J.M.J., Kang S., Zhou R., Voth G.A. J. Phys. Chem. B. 2015. V. 119. P. 9212–9218. DOI: 10.1021/jp5095118.

Agmon N., Bakker H.J., Campen R.K., Henchman R.H., Pohl P., Roke S., Thämer M., Hassanali A. Chem. Rev. 2016. V. 116. P. 7642–7672. DOI: 10.1021/acs.chemrev.5b00736.

Paenurk E., Kaupmees K., Himmel D., Kutt A., Kaljurand I., Koppel I.A., Krossing I., I. Leito, Chem. Sci. 2017. V. 8. P. 6964–6973. DOI: 10.1039/C7SC01424D.

Klare H.F.T., Oestreich M. J. Am. Chem. Soc. 2021. V. 143. N 38. P. 15490–15507. DOI: 10.1021/jacs.1c07614.

Calio P.B., Li Ch., Voth G.A. J. Am. Chem. Soc. 2021. V. 143. N 44. P. 18672–18683. DOI: 10.1021/jacs.1c08552.

Librovich N.B., Kislina I.S. Kinetics and Catalysis. 2002. V. 43. N 1. P. 51–55.

Basilevsky M.V., Vener M.V. Russ. Chem. Rev. 2003. V. 72. N 1. P. 1–33. DOI: 10.1070/RC2003v072n01ABEH000774.

Gutowski K.E., Dixon D.A. J. Phys. Chem. A. 2006. V. 110. P. 12044–12054.

Cox R. A. Intern. J. Mol. Sc. 2011. P. 8316–8332. DOI: 10.3390/ijms12128316.

Cox R.A. Adv. Phys. Org. Chem. 2012. V. 46. P. 1–55. DOI: 10.1016/B978-0-12-398484-5.00001-8.

Kozlov V.A., Ivanov S.N., Koifman O.I. J. Phys.Org. Chem. 2017. V. 29. P. 1–29. DOI: 10.1002/poc.3715.

Trummal A., Lipping L., Kaljurand I., Koppel I.A., Leito I. J. Phys. Chem. A. 2016. V.120 N. 20. P. 3663–3669. DOI: 10.1021/acs.jpca.6b02253.

Ivanov S.N., Kozlov V.A., Koifman O.I. J. Sol. Chem. 2021. V. 5. N 5. P. 630–651. DOI: 10.1007/s10953-021-01066-7.

Voth G.A. Acc. Chem. Res. 2006. V. 39. N 2. P. 143–150.

Isaev A.N. RHZH. 2007. T. 51. N 5. P. 34–48. Isaev A.N. K voprosu o perenose protona vodorodnoj svyazi // ZHFH. 2012. T. 86. N 1. P. 75–81.

Silverstein T.P. Front. Mol. Biosci. 2021. V. 8. Nov. Art. 764099. DOI: 10.3389/fmolb.2021.764099.

Kozlov V.A., Nikiforova T.E., Loginova V.A., Koifman O.I. J. of Hazard. Mat. 2015. V. 299. P. 725–732. DOI: 10. 1016/j. jhazm at. 2015. 08. 004.

Cerfontain H. Mechanistic Aspects in Aromatic Sulfonation and Desalfonation. N.-Y., Lond.: Inter science. 1968. ch 2. P. 13–45.

Vinnik M.I., Abramovich L.D. Izv. AN SSSR. Ser. kim. 1972. N 4. P. 834–840.

Smirnov A.I., Vinnik M.I. Zhurn. fiz. Khimii. 1979. V. 53. N 5. P. 1247–1252.

Kozlov V.A., Popkova I.A. Zhurn. org. khimii. 1980. V. 16. N 1. P.106–110.

Kozlov V.A., Popkova I.A. Zhurn. org. khimii. 1982. V. 18. N 4. P. 881–886.

Kozlov V.A., Bagrovskaya N.A. Zhurn. org. khimii. 1986. V. 22. N 6. P. 1228–1236.

Koleva G., Galabov B., Kong J., Schaefer H.F., Schleyer P. von R. J. Am. Chem. Soc. 2011. V. 133. N 47. P. 19094–19101. DOI: 10.1021/ja201866h.

Galabov B., Nalbantova D., Schleyer P.R., Schaefer H. F., III. Acc. Chem. Res. 2016. V. 49. N 6. P. 1191–1199. DOI: 10.1002/chin.201635190.

Ivanov S.N., Gnedin B.G., Shhukina M.V. Zhurn. org. khimii. 1988. V. 24. N 4. P. 810–817.

Ivanov S.N., Kislov V.V., Gnedin B.G. Zh. Obshch. Khim. (in Russian) 1998. V. 68. N 7. P.1123−1128.

Paddison S.J., Elliott J.A. Solid State Ionics. 2006. V. 177. P. 2385–2390.

Dobrovol’skii Yu. A., Volkov E. V., Pisareva A. V., Fedotov Yu. A., Likhachev D. Yu., Rusanov A. L. Russ. J. Gen. Chem. 2007. V. 77. N 4. P. 766–777.

Agmon N., Gutman M. Nat. Chem. 2011. V. 3. P. 840−842. DOI: 10.1038/nchem.1184.

Feng S, Voth G.A. J. Phys. Chem. B. 2011. V. 115. N 19. P. 5903–5912. DOI: 10.1021/jp2002194.

Savage J., Voth G.A. J. Phys. Chem. C 2016. V. 120.

P. 3176−3186.

Mabuchi T., Tokumasu T. J. Phys. Chem. B. 2018. V. 122.

P. 5922–5932.

Weichselbaum E., Galimzyanov T., Batishchev O.V., Akimov S.A., Pohl P. Biomolecules. 2023. Feb 11; 13(2): 352. DOI: 10.3390/biom13020352.PMID: 36830721.

Hammett L.P. Physical Organic Chemistry. N.-Y., London.1940.

Jorgenson M.J., Hartter D.R., A J. Am. Chem. Soc. 1963. V. 85. P. 878−883. DOI: 10.1021/ja00890a009.

Robertson E. B., Dunford H. B. J. Am. Chem. Soc. 1964. V. 86. N 23. P. 5080–5089. DOI: 10.1021/ja01077a007.

Vinnik M.I. Russ. J. Usp. Khim. 1966. V. 35. P.1922–1952.

Rochester C.H. Acidity Functions, Acad. Press. N-Y. 1970.

Johnson C.D., Katritzky A.R., Shapiro S.A. J. Am. Chem. Soc. 1969. V. 91. P. 6654–6652. DOI: 10.1021/ja01052a021ю.

Bates R.G. Determination of pH. Theory and practice, John Wiley & Sons Inc. N.-J., London, Sydney. 1964.

Bell R.P. The Proton in Chemistry, Chapman and Hall. London. 1973.

Himmel D., Goll S. K., Leito I., Krossing I. A. Angew. Chem. Int. Ed. 2010. V. 49. P. 6885–6888. DOI: 10.1002/anie.201000252.

Scorrano G., More O'Ferrall R. J.Phys.Org.Chem. 2013. N 26. P. 1009–1015. DOI: 10.1002/poc.3171.

Popkova I.A., Kozlov V.A. Izv.Vuzov. Khimiya i khim. Tekhnol. 1986. V. 29. N 2. P. 29–33.

E`pshtejn L.M., Iogansen A.V. Usp. Khimii. 1990. V. 59. N 2. P. 229–257.

Oliferenko P.V., Oliferenko A.A., Poda G., Palyulin V.A., Zefirov N.S., Katritzky A.R. J. Chem. Inform. and Model. 2009. V. 49. N 3. P. 634–646. DOI: 10.1021/ci800323q.

Uchnevich G.V., Tarakanova E.G., Mayorov V.D., Librovich N.B. Russ. Chem. Rev. 1995. V. 64. P. 901–911. DOI: 10.1070/RC1995v064n10ABEH000183.

Palascak M.W., Shields G.C. J. Phys. Chem. A. 2004. V. 108. P. 3692–3694. DOI: 10.1021/jp049914o.

Camaioni D.M., Schwerdtfeger Ch. A. J. Phys. Chem. A. 2005. V. 109. P. 10795–10797. DOI: 10.1021/jp054088k.

Tarakanova E.G., Yukhnevich G.V., Librovich N.B. Khim. fiz. 2005. V. 24. N 6. P. 44.

Headrick J. M. et al. Science. 2005. V. 308. P. 1765–1769. DOI: 10.1126/science.1113094.

Kelly C. P., Cramer Ch.J., Truhlar D.G. J. Phys. Chem. B. 2006. V. 110. P. 16066–16081. DOI: 10.1021/jp063552y.

Markovitch O., Agmon N. J. Phys. Chem. A. 2007. V. 111. N 12. Р. 2253–2256. DOI: 10.1021/jp068960g.

Park M., Shin I., Singh N. J., Kim K. S. J. Phys. Chem. A. 2007. V. 111. P. 10692−10702. DOI: 10.1021/jp073912x.

Wang F., Izvekov S., Voth G.A. J. Am. Chem. Soc. 2008. V. 130. N 10. P. 3120–3126. DOI: 10.1021/ja078106i.

Vener M.V., Librovich N.B. Intern. Rev. Phys. Chem. 2009. V. 28. P. 407–434. DOI: 10.1080/01442350903079955.

Swanson J.M.J., Simons J. J. Phys. Chem. B. 2009. V. 113. P. 5149−5161. DOI: 10.1021/jp810652v.

Librovich N.B., Kislina I.S., Tarakanova E.G. J. Phys. Chem. 2009. V. 3. P. 136–139. DOI: 10.1134/S1990793109010217.

Stoyanov E.S., Stoyanova I.V., Reed C.A. J. Am. Chem. Soc. 2010. V. 132. P. 1484–1485. DOI: 10.1021/ja9101826.

Stoyanov E.S., Stoyanova I.V., Reed C.A. Chem. Sci. 2011. P. 462–472. DOI: 10.1039/C0SC00415D.

Kulig W., Agmon N. J. J. Phys. Chem. B. 2014. V. 118.

P. 278–286. DOI: 10.1021/jp410446d.

Meraj G., Chaudhari A. J. Mol. Liq. 2014. V. 190. P. 1–5. DOI: 10.1016/j.molliq.2013.10.006.

Yu Q., Bowman J. M. J. Am. Chem. Soc. 2017. V. 139.

P. 10984–10987. DOI: 10.1021/jacs.7b05459.

Bednyakov A. S., Stepanov N.F., Novakovskaya Yu.V. Russ. J. Phys. Chem. A. 2014. V. 88. P. 287–294. Z. Fiz. Khim. 88 (2014) 297-305.

Thämer M., De Marco L., Ramasesha K., Mandal A., Tokmakoff A. Science. 2015. V. 350. P. 78–82. DOI: 10.1126/science.aab3908.

Fournier J.A., Carpenter W.B., Lewis N.H.C., Tokmakoff A. Nature Chemistry. 2018. V. 10. P. 932–937. DOI: 10.1038/s41557-018-0091-yi.

Biswas R., Voth G.A. J. Chem. Sci. 2017. V. 129. P. 1045–1051. DOI: 10.1007/s12039-017-1283-5.

Zeng Y., Li A., Yan T.J. Phys. Chem. B. 2020. V. 124. N 9.

P. 1817–1823. DOI: 10.1021/acs.jpcb.0c00990.

Ryding M.J., Izsák R., Merlot P., Reine S., Helgaker T., Uggerud E. Phys.Chem.Chem.Phys. 2015. V. 17. P. 5466–5473. DOI: 10.1039/c4cp05246c.

Siwick B.J., Bakker H.J. J. Am. Chem. Soc. 2007. V. 129. N 44. P. 13412–13420. DOI: 10.1021/ja069265p.

Pettersson L.G.M., Henchman R.H., Nilsson A. Chem. Rev. 2016. V. 116. P. 459–462. DOI: 10.1021/acs.chemrev.6b00363.

Lockwood G. K., Garofalini S.H. J. Phys. Chem. B. 2013. V. 117. P. 4089−4097. DOI: 10.1021/jp310300x.

Kazansky V.B. Catalysis Today. 2002. V. 73. P. 127–137.

Park M., Shin I., Singh N.J., Kim K.S. J. Phys Chem A. 2007. V. 111. N 42. P. 10692–702. DOI: 10.1021/jp073912x.

Buch V., Dubrovskiy A., Mohamed F., Parrinello M., Sadlej J., Hammerich A.D., Devlin J.P. J. Phys. Chem. A. 2008. V. 112. P. 2144– 2161. DOI: 10.1021/jp076391m.

Fulton J.L., Balasubramanian M. J. Am. Chem. Soc. 2010. V. 132. N 36. P. 12597–12604. DOI: 10.1021/ja1014458.

Lin W., Paesani F. J. Phys. Chem. A. 2013. V. 117. N 32. P. 7131–714. DOI: 10.1021/jp400629t.

Ivanov S.N., Gnedin B.G. Zh.Org.Khim. 1989. V. 25. N 4. P. 831–835.

Shilov E.A. Dokl.AN SSSR. 1938. V. I8. N 9. P. 643–648.

Ivanov S.N., Kislov V.V., Gnedin B.G. Zh.Org.Khim. 2004. V. 74. N 1. P. 94–102.

Ivanov S.N., Mikhajlov A.V., Gnedin B.G., Lebedukho A.Yu., Korolev V.P. Kinetika i kataliz. 2005. V. 46. N 1. P. 35–43.

Ivanov S.N., Kislov V.V., Gnedin B.G. Zhurn.obshh. khimii. 2004. V. 74. N 1. P. 103–109.

Ivanov S.N., Mikhajlov A.V., Gnedin B.G., Korolev V.P. ZhFKh. 2004. V. 78. N 4. P. 615–621.

Leopold K.R. Ann. Rev. Phys. Chem. 2011. V. 62.

P. 327–349. DOI: 10.1146/annurev-physchem-032210-103409.

Fraenkel D. J. Phys. Chem. B. 2012. V. 116.

P. 11662–11677. DOI: 10.1021/jp3060334.

Fraenkel D. J. Phys. Chem. B. 2012. V. 116. P. 11678–11686. DOI: 10.1021/jp306042q.

Thaunay F., Hassan A.A., Cooper R.J., Williams E.R., Clavaguera C., Ohanessian G. Int.J.Mass Spectr. 2017. V. 418. P. 15–23. DOI: 10.1016/j.ijms.2017.01.005.

Blades A.T., Kebarle P. J. Phys. Chem. A. 2005. V. 109.

P. 8293–8298. DOI: 10.1021/jp 0540353.

Kulichenko M., Fedik N., Bozhenko K.V., Boldyrev A.I. J. Phys. Chem. B. 2019. V. 123. P. 4065–4069. DOI: 10.1021/acs.jpcb.9b01744.

Bing G., Zhi–feng L. J. Chem. Phys. 2005. V. 123. P. 224302. DOI: 10.1063/1.2134698.

Kozlov V.A., Bagrovskaya N.A., Berezin B.D. Izv. VUZov SSSR. Khimiya i khim. Tekhnol. 1985. V. 28. N 2. P. 34–37.

Dupont D., Raiguel S., Binnemansa K. Chem. Commun. 2015. V. 51. P. 9006–9009. DOI: 10.1039/C5CC02731D.

Shan W., Yang Q., Su B., Bao Z., Ren Q., Xing H. J. Phys. Chem. C. 2015. V. 119. P. 20379–20388. DOI: 10.1021/acs.jpcc.5b02814.

Cox R. A. Advances in Physical Organic Chemistry. 2000. N 35. Р. 1–66. ISBN 0-12-033535-2.

Cox R.A., Yates K. Can. J. Chem. 1981. 59. P. 2116–2124. DOI: 10.1139/v81-306.

Ivanov S.N., Gnedin. B.G., Shhukina M.V. Zhurn.org. khimii. 1990. V. 26. N 4. P. 1415–1422.

Popkova I. A., Kozlov V. А. Russ. Zh. Obshch. Khim. 1988. V. 58. P. 877–880.

Fadeeva Y.A., Nikolaeva A.V., Safonova L.P. J. Mol. Liq. 2014. V. 193. P. 1–5. DOI: 10.1016/j.molliq.2013.12.010.

Bentley T.W. Can. J. Chem. 2008. V. 86. P. 277–280. DOI: 10.1139/V08-003.

Cox R.A. Can. J. Chem. 2012. V. 90. P. 811–818. DOI: 10.1139/v2012-060.

Marcus Y. Ions in Water and Biophysical Implications. Springer Science + Business Media. Dordrecht. 2012. DOI: 10.1007/978-94-007-4647-3.

Yates K., Wai H. J. Am. Chem. Soc. 1964. V. 86. P. 5408–5413. DOI: 10. 1021/ ja010 78a008.

Alongi K.S., Shields G.C. Theoretical Calculations of Acid Dissociation Constants: A Review Article. Ann. Rep. in Comp. Chem. 2010. V. 6. DOI: 10.1016/S1574-1400(10)06008-1.

Walrafen G.E., Yang W.H., Chu Y.C., Hokmabadi M.S. Journal of Solution Chemistry. 2000. V. 29. P. 905–936. DOI: 10.1023/A:1005134717259.

Ivanov S.N., Kozlov V.A. Vestnik IvGU, Matematika, Biologiya. Khimiya. 2022. N. 2. P. 34–40.

Erokhina E., Dy`mnikova N., Mory`ganov A. Ros. Khim. Zh. 2022. 66(4). 6-13. DOI: 10.6060/rcj.2022664.1.

Genis A., Kuznetsov A. Ros. Khim. Zh. 2020. 63(1). 27-45. DOI: 10.6060/rcj.2019631.2.

Meretin R.N., Nikiforova Т.E. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 11. P. 117-125. DOI: 10.6060/ivkkt.20216411.6408.

Drogobuzhskaya S.V., Shirokaya A.A., Solov’ev S.A. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 11. P. 117125. DOI: 10.6060/ivkkt.20196211.5982.

Cao Nhat Linh, Zyablov A.N., Duvanova O.V., Selemenev V.F. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 2. P. 7176. DOI: 10.6060/ivkkt.20206302.6071.

Published
2023-07-20
How to Cite
Иванов, С., Козлов, В., Никифорова, Т., Койфман, О., & Пырэу, Д. (2023). Hydrate -anion complex of proton [H(H2O)n]+А− as the basis of the complex acidity function of aqueous solutions of strong mineral acids in excess of water. Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal), 67(2), 3-20. https://doi.org/10.6060/rcj.2023672.1
Section
Статьи

Most read articles by the same author(s)