ОТРИЦАТЕЛЬНЫЙ ФОТОХРОМИЗМ: ПОСЛЕДНИЕ ДОСТИЖЕНИЯ

  • V.A. Barachevsky Центр фотохимии Федерального научно-исследовательского центра «Кристаллография и фотоника» Российской академии наук
Ключевые слова: отрицательный фотохромизм, фотохромные соединения, спектроскопия

Аннотация

Представлен анализ последних достижений в исследовании явления отрицательного фотохромизма органических соединений из классов спиропиранов, Стенхаус и нитрил-содержащих соединений, бииимидазолильных радикальныых комплексов, дигидропиранов, цианиновых красителей, азуленов и гидразонов. Установлены зависимости спектрально-кинетических свойств от их структуры и природы заместителей. Рассмотрены возможности применения фотохромных систем на их основе в создании покрытий с фотоадаптивными свойствами и в биомедицинских технологиях.

Биография автора

V.A. Barachevsky, Центр фотохимии Федерального научно-исследовательского центра «Кристаллография и фотоника» Российской академии наук
 

Литература

Photochromic Materials: Preparation, Properties and Applica-tions. Tian H. and Zhang J. (Eds.), Weinheim, Germany:Wiley-VCH Verlag GmbH & Co. KGaA. 2016.421 p.

Applied Photochromic Polymer Systems. McArdle C.B. (Ed.). Glasgow: Blackiev &Son Ltd. 1991. 255 p.

Barachevsky V.A., Krayushkin M.M., Kiyko V.V. Light-Sensitive Organic Recording Media for Three-Dimensional Optical Memory. In: Photon-Working Switches. Eds. Yoko-yama Y., Nakatani K. Springer Japan KK. 2017. P. 181–207.

Barachevsky V.A. Negative Photochromism in Organic Systems. Rev. J. Chem. 2017. V. 7. P. 334–371. DOI: 10.1134/S2079978017030013.

Aiken S., Edgar R.J.L., Gabbutt C.D., Heron B.M., Hobson P.A. Negatively photochromic organic compounds: Exploring the dark side. Dyes and Pigments. 2018. V. 149. P. 92–121. DOI: 10.1016/ j.dyepig.2017. 09.057.

Barachevsky V.A., Valova T.M. A spectral-kinetic investigation of the negative photochromism of systems based on complexes of spiropyrans with metal ions. Opt. Spectr. 2017. V. 123. N 3. P. 404–410. DOI: 10.1134/S0030400X17090065.

Barachevsky V.A, Valova N.M. Fluorescence properties of polymeric systems with negative phochromism based on complexes of spiropy-ran with metal ions. Rus. J. Appl. Chem. 2021. Т. 94. N 3. P. 44–49. DOI: 10.1134/S1070427221030034.

Chernyshev A.V., Metelitsa A.V., Rostovtseva I.A., Voloshin N.A., Solov’eva E.V., Gaeva E.B., Minkin V.I. Chromogenic systems based on 8-(1,3-benzoxazol-2-yl) substituted spiro-benzopyrans undergoing ion modulated photochromic rear-rangements. J. Photochem. Photobiol. A. 2018. V. 360. P. 174–180. DOI: 10.1016/ j.jphotochem. 2018.04.031.

Chernyshev A.V., Voloshin N.A., Rostovtseva I.A., Demidov O.P., Shepelenko K.E., Solov’eva E.V., Gaeva E.B., Metelitsa A.V. Benzothiazolyl substituted spiropyrans with ion-driven photochromic transformation. Dyes and Pigments. 2020. V. 178. Art. 108337. DOI: 10.1016/j.dyepig.2020.108337.

Chernyshev A.V., Voloshin N.A., Solov’eva E.V., Gaeva E.B., Zubavichus Y.V., Lazarenko V.A., Vlasenko V.G., Khrustalev V.N., Metelitsa, A.V. Ion-depended photochromism of oxadiazole containing spiropyrans. J. Photochem. Photobiol. A. 2019. V. 378. P. 201–210. DOI: 10.1016/j.jphotochem.2019.04.037.

Valova Т.М., Barachevsky V.А., Khuzin А.А., Тuktarov А.R. Negative photochromism of solutions of functionalized spiropyrans in a water—acetonitrile mixture. Rus. J. General Chem. 2019. V. 89. P. 1783–1786. DOI: 10.1134/ S0044460X19090099.

Okabe Y., Ogawa M. Photoinduced adsorption of spiropyran into mesoporous silicas as photomerocyanine. RSC Adv. 2015. V. 5. P. 101789–101793. DOI: 10.1039/ C5RA18252B.

Yamaguchi T., Maity A., Polshettiwar V., Ogawa M. Photochromism of a spiropyran in the presence of a dendritic fibrous nanosilica; simultaneous photochemical reaction and ad-sorption. J. Phys. Chem. A. 2017. V. 121. P. 8080–8085. DOI: 10.1021/ acs.jpca.7b08466.

Yamaguchi, T., Ogawa, M. Hydrophilic internal pore and hydrophobic particle surface of organically modified mesopo-rous silica particle to host photochromic molecules. Chem. Lett. 2019. V. 48. N 2. P. 170–172. DOI: 10.1246/cl.180908.

Yamaguchi T., Maity A., Polshettiwar V., Ogawa M. Negative photochromism based on molecular diffusion between hydro-philic and hydrophobic particles in the solid state. Inorg. Chem. 2018. V. 57. N 7. P. 3671–3674. DOI: 10.1021/acs.inorgchem.7b03132.

Yamaguchi T., (Nut) Leelaphattharaphan N., Shin H., Ogawa M. Acceleration of photochromism and negative photochromism by the interactions with mesoporous silicas. Photochem. Photobiolog. Sci. 2019. V. 18. P. 1742–1749. DOI: 10.1039/c9pp00081j.

Yamaguchi T., Imwiset K. J., Ogawa M. Efficient negative photochromism by the photoinduced migration of of photo-chromic merocyanine/spiropyran in the solid state. Langmuir. 2021. V. 37. N 12. P. 3702–3708. DOI: 10.1021/acs.langmuir.1c00150.

Metelitsa A., Chernyshev A., Voloshin N., Solov’eva E., Rostovtseva I., Dorogan I., Gaeva E., Guseva A. Semipermanent merocyanines of spirocyclic compounds: photochromic “bal-ance. Dyes and Pigments. 2021. V. 186. Art. 109070. DOI: 10.1016/j.dyepig.2020.109070.

Pugachev A.D., Ozhogin I.V., Lukyanova M.B., Lukyanov B.S., Kozlenko A.S., Rostovtseva I.A., Makarova N.I., Tkachev V.V., Aldoshin S.M., Metelitsa A.V. Synthesis, structure and photochromic properties of indoline spiropyrans with electron-withdrawing substituents. J. Molec. Struct. 2021. V. 1229. Art. 129615. DOI: 10.1016/j.molstruc.2020.

Funasako Y., Miyazaki H., Sasaki T., Goshima K., Inokuchi M. Synthesis, photochromic properties, and crystal structures of salts containing a pyridinium-fused spiropyran: positive and negative photochromism in the solution and solid state. J. Phys. Chem. B. 2020. V. 124. P. 7251−7257. DOI: 10.1021/acs.jpcb.0c04994.

Gao H., Guo T., Chen Y., Kong Y., Peng Z. Reversible negative photochromic sulfo-substituted spiropyrans. J. Molecul. Struct. 2016. V. 1123. P. 426–432. DOI: 10.1016/ j.molstruc. 2016.07.050.

Barachevsky V.A., Valova T.M., Atabekyan L.S., Lyubimov A.V. Negative photochromism of water-soluble pyridine-containing nitro-substituted spiropyrans. High Energy Chem. 2017. V. 51. N 6. Р. 415–419. DOI: 10.1134/S0018143917060029.

Koryako N.E., Ivakhnenkoa D.A., Ivakhnenkoa A.A., Lyu-bimov A.V., Zaichenko N.L., Lyubimova G.V., Arslanova V.V., Shokurova A.V., Raitman O.A. Negative photochromism and luminescent properties of amphiphilic spiropyran in solutions and at the interface. Protect. Metals Phys. Chem. Surf. 2019. V. 55. N 6. P. 1118–1123. DOI: 10.1134/S2070205119060194.

Feeney M.J., Thomas S.W. Tuning the тegative photochromism of water-soluble spiropyran polymers. Macromolecules. 2018. V. 51. N 20. P. 8027–8037. DOI: 10.1021/acs.macromol.8b01915.

Sun B.-B., Yao B.-H., Fu Z.-S., He Y.-Q. Preparation and analysis of photochromic behavior of carboxymethyl chitin derivatives containing spiropyran moieties. Design. Monom. Polymers. 2020. V. 23. N. 1. P. 106–117. DOI:10.1080/-15685551.-2020.-1796362.

Tang Z., Wang W., Pi Y., Wang J., Li C., Tan R., Yin D. Visi-ble light-controlled reaction-separation for asymmetric sulfoxidation in water with photo-responsive metallomicelles. ACS Sustain. Chem. Engineer. 2019. V. 7. P. 17967−17978. DOI: 10.1021/acssuschemeng.9b04712.

Qiu W., Gurr P.A., Qiao G.G. Color switchable polar polymeric materials. ACS Appl. Mater. Interfас. 2019. V. 11. No. 32. P. 29268–29275. DOI: 10.1021/acsami.9b09023.

Lerch M.M., Szymański W., Feringa B.L. The (pho-to)chemistry of Stenhouse photoswitches: guiding principles and system design. Chem. Soc. Rev. 2018. V. 47. N 6. P. 1910–1937. DOI:10.1039/c7cs00772h.

Lerch M.M., Wezenberg S.J., Szymański W., Feringa B. Unraveling the photoswitching mechanism in donor–acceptor Stenhouse adducts. J. Am. Chem. Soc. 2016. V. 138. P. 6344–6347. DOI: 10.1021/jacs.6b01722.

Helmy S., Oh S., Leibfarth F.A., Hawker C.J., Read de Alaniz J. Design and synthesis of donor–acceptor Stenhouse adducts: a visible light photoswitch derived from furfural. J. Org. Chem. 2014. V. 79. P. 11316–11329. DOI: 10.1021/jo502206g.

Mallo N., Brown P.T., Iranmanesh H., MacDonald T.S.C., Teusner M.J., Harper J.B., Ball G.E., Beves J.E. Photo-chromic switching behaviour of donor–acceptor Stenhouse adducts in organic solvents. Chem. Commun. 2016. V. 52. P. 13576–13579. DOI: 10.1039/C6CC08079K.

Hemmer J.R., Page Z.A., Clark K.D., Stricker F., Dolinski N.D., Hawker C.J., Read de Alaniz J. Controlling dark equilibria and enhancing donor–acceptor Stenhouse adduct pho-toswitching properties through carbon acid design. J. Amer. Chem. Soc. 2018. V. 140. P. 10425−10429. DOI: 10.1021/jacs.8b06067.

Ulrich S., Hemmer J.R., Page Z.A., Dolinski N.D., Rifaie-Graham O., Bruns N., Hawker C.J., Boesel L.F., Read De Alaniz J. Visible light-responsive DASA-polymer conjugates. ACS Macro Lett. 2017. V. 6. P. 738–742. DOI: 10.1021/ acsmacrolett.7b00350.

Lerch M.M., Medved′ M., Lapini A., Laurent A. D., Iagatti A., Bussotti L., Szymański W., Buma W.J., Foggi P., Di Donato M., Feringa B.L. Tailoring photoisomerization pathways in donor–acceptor Stenhouse adducts: the role of the hydroxy group. J. Phys. Chem. A. 2018. V. 122. N 4. P. 955–964. DOI: 10.1021/acs.jpca. 7b10255.

Lerch M.M., Di Donato M., Laurent A.D., Medved’ M., Iagatti A., Bussotti L., Lapini A., Buma W.J., Foggi P., Szy-mański W., Feringa B.L. Solvent effects on the actinic step of donoracceptor Stenhouse adduct photoswitching. Angew. Chem. Intern. Ed. 2018. V. 57. N 27. P. 8063–8068. DOI: 10.1002/anie.201803058.

Yang S., Liu J., Cao Z., Li M., Luo Q., Qu D. Fluorescent photochromic donoracceptor Stenhouse adduct controlled by visible light. Dyes and Pigments. 2018. V. 148. P. 341–347. DOI: 10.1016/j.dyepig.2017.09.040.

Chen T.-Y., Cai Y.-D., Jiang S.-Q., Cai W.T., Ming-Liang, Bao X. Light- and chemicalstimuli-induced isomerization of donor-acceptor Stenhouse adducts. Chem. Photo Chem. 2021. DOI: 10.1002/cptc.202100004.

Chen Q., Diaz Y.J., Hawker M.C., Martinez M.R., Page Z.A., Xiao-An Zhang S., Hawker C. J. Read de Alaniz J. Stable activated furan and donor–acceptor Stenhouse adduct polymer conjugates as chemical and thermal sensors. Macromolecules. 2019. V. 52. P. 4370−4375. DOI: 10.1021/acs.macromol.9b00533.

Lee J., Sroda M.M., Kwon Y., El-Arid S., Seshadri S., Gockowski L. F., Hawkes E.W., Valentine M.T., Read de Ala-niz J. Tunable photothermal actuation enabled by photoswitching of donor–acceptor Stenhouse adducts. ACS Appl. Mater. Interf. 2020. V. 12. N 48. P. 54075–54082. DOI: 10.1021/acsami. 0c15116.

Seshadri S., Gockowski L.F., Lee J., Sroda M., Helgeson M.E., Read de Alaniz J., Valentine M.T. Selfregulating photochemical Rayleigh-Bénard convection using a highly-absorbing organic photoswitch. Nat. Commun. 2020. V. 11. Art.2599. DOI: 10.1038/s41467-020-16277-7.

Peng P., Strohecker D., Liao Y. Negative photochromism of a TCF chromophore. Chem. Commun. 2011. V. 47. N 30. P. 8575-8577. DOI: 10.1039/c1cc12379c.

Johns V.K., Peng P., DeJesus J., Wang Z., Liao Y. Visiblelight-responsive reversible photoacid based on a metastable carbanion. Chem. Eur. J. 2013. V. 20. N 3. P. 689–692. DOI: 10.1002/chem.201304226.

Yang C., Khalil T., Liao Y. Photocontrolled proton transfer in solution and polymers using a novel photoacid with strong C–H acidity. RSC Adv. 2016. V. 6. N 8. P. 85420–85426. DOI: 10.1039/c6ra12966h.

Belikov M.Yu., Ievlev M.Yu., Fedoseev S.V., Ershov O.V. Novel group of negative photochromes containing a nitrilerich acceptor: synthesis and photochromic properties. Res. Chem. Intermed. 2019. V. 45. P. 4625–4636. DOI: 10.1007/s11164-019-03853-w.

Belikov M.Y., Ievlev M.Y., Fedoseev S.V., Ershov O.V. Tuning the photochromic properties of chromophores containing a nitrilerich acceptor: a novel branch in the investigation of nega-tive photochromes. New J. Chem. 2019. V. 43. P. 8414–8417. DOI: 10.1039/c9nj01648a.

Belikov M.Y., Fedoseev S.V., Ievlev M.Y., Ershov O.V., Lipin K.V., Tafeenko V.A. Direct synthesis of variously substituted negative photochromes of hydroxytricyanopyrrole (HTCP) series. Synth. Commun. 2020. V. 50. N 16. P. 2413–2421. DOI: 10.1080/ 00397911.2020.1772822.

Belikov M.Yu., Ievlev M. Yu.,. Fedoseev S.V, Ershov O.V. The first example of “turn-off” red fluorescence photoswitching for the representatives of nitrilerich negative photochromes. New J. Chem. 2020. V. 44. P. 6121–6124. DOI: 10.1039/D0NJ00718H.

Mutoh K., Kobayashi Y., Hirao Y., Kubo T., Abe J. Stealth fast photoswitching of negative photochromic naphthalene-bridged phenoxyl-imidazolyl radical complexes. Chem. Com-mun. 2016. V. 52. N 41. P. 6797–6800. DOI: 10.1039/C6CC01534D.

Yamaguchi T., Kobayashi Y., Abe J. Fast negative photochromism of 1,1′-binaphthyl-bridged phenoxyl–imidazolyl radical complex. J. Am. Chem. Soc. 2016. V. 138. N 3. P. 906–913. DOI: 10.1021/jacs.5b10924.

Kometani A., Inagaki Y., Mutoh K., Abe J. Red or NIR light operating negative photochromism of binaphthyl-bridged imidazole dimer. J. Amer. Chem. Soc. 2020. V. 142. P. 7995−8005. DOI: 10.1021/jacs.0c02455.

Abe J., Ito H., Mutoh K. Enhancement of negative photochromic properties of naphthalene‐bridged phenoxyl‐imidazolyl radical complex. ChemPhysChem. 2020. V. 21. N 14. P. 1578−1586. DOI:10.1002/cphc.202000296.

Yonekawa I., Mutoh K., Abe J. Visible light intensity dependent negative photochromism of binaphthyl-bridged phenoxyl-imidazolyl radical complex. Chem. Commun. 2019. V. 55. P. 1221–1224. DOI: 10.1039/c8cc09591d.

Yonekawa I., Mutoh, K., Kobayashi Y., Abe J. Intensity-dependent photoresponse of biphotochromic molecule composed of a negative and a positive photochromic unit. J. Amer. Chem. Soc. 2018. V. 140. N 3. P. 1091–1097. DOI: 10.1021/jacs.7b11673.

Mutoh K., Miyashita N., Arai K., Abe J. Turn-On Mode Fluorescence switch by using negative photochromic imidazole dimer. J. Amer. Chem. Society. 2019. V. 141. P. 5650−5654. DOI: 10.1021/jacs.9b01870.

Jia S., Graham B., Capuano B., Tan A., Hawley A., Boyd B.J. Hexaarylbiimidazoles(HABI)-functionalized lyotropic liquid crystalline systems as visible light-responsive materials.

J. Coll. Interf. Sci. 2020. V. 579. P. 379–390. DOI: 10.1016/j.jcis. 2020.06.006.

Wang Q., Ligorio G., Schlesinger R., Diez‐Cabanes V., Cornil D., Garmshausen Y., Hecht S., Cornil J., List-Kratochvil E.J. W., Koch N. Switching the electronic properties of ZnO surfaces with negative T‐Type photochromic pyridyl‐dihydropyrene layers and impact of Fermi level pin-ning. Adv. Mater. Interf. 2019. V. 6. N. 10. Art. 1900211. DOI: 10.1002/admi.201900211.

Klaue K., Garmshausen Y., Hecht S. Taking photochromism beyond visible: direct one-photon NIR photoswitches operating in the biological window. Angew. Chem. Intern. Ed. 2018. V. 57. N 5. P. 1414–1417. DOI: 10.1002/anie.201709554.

Sarkar R., Heitz M.-C., Roya G., Boggio-Pasqua M.J. Elec-tronic excited states and UV−Vis absorption spectra of the di-hydropyrene/cyclophanediene photochromic couple: a theoret-ical investigation. Phys. Chem. A. 2020. V. 124. P. 1567−1579. DOI: 10.1021/acs.jpca.9b11262.

Saima B., Khan N., Al-Faiyz Y.S., Ludwig R., Rehman W., Habib-ur-Rehman M., Sheikh N.S., Ayub K. Photo-tunable linear and nonlinear optical response of cyclophanediene-dihydropyrene photoswitches. J. Molec. Graph. Model. 2019. V. 88. P. 261–272. DOI: 10.1016/j.jmgm.2019.01.019.

Nemoto K., Enoki M., Katoh R., Suzuki K., Murase T., Imazeki S. Negative photochromism of a blue cyanine dye. Chem. Commun. 2020. V. 56. P. 15205–15207. DOI: 10.1039/d0cc06359b.

Hou I. C.-Y., Berger F., Narita A., Müllen K., Hecht S. Proton‐gated ring‐closure of a negative photochromic azulene‐based diarylethene. Angew. Chem. Intern. Ed. 2020. V. 59. P. 18532–18536. DOI: 10.1002/anie.202007989.

Qian H., Pramanik S., Aprahamian I. Photochromic hydrazone switches with extremely long thermal half-lives. J. Amer. Chem. Soc. 2017. V. 139. N 27. P. 9140–9143. DOI: 10.1021/jacs.7b04993.

Опубликован
2021-09-17
Как цитировать
Barachevsky, V. (2021). ОТРИЦАТЕЛЬНЫЙ ФОТОХРОМИЗМ: ПОСЛЕДНИЕ ДОСТИЖЕНИЯ. Российский химический журнал, 65(3), 6-18. https://doi.org/10.6060/rcj.2021653.1
Раздел
Статьи