DOI: 10.6060/rcj.2023674.8

УДК: 544.6.018.47-036.5

НОВЫЕ ЛИТИЕВЫЕ ТВЕРДОТЕЛЬНЫЕ АККУМУЛЯТОРЫ С АСИММЕТРИЧНЫМ ПОЛИМЕРНЫМ НАНОКОМПОЗИТНЫМ ЭЛЕКТРОЛИТОМ И LiFePO4 КАТОДОМ, ЭФФЕКТ «ЖИДКОФАЗНОЙ ТЕРАПИИ»

А.А. Слесаренко, Г.Р. Баймуратова, Н.А. Слесаренко, Г.З. Тулибаева, А.В. Юдина, О.В. Ярмоленко

ФИЦ проблем химической физики и медицинской химии Российской академии наук, пр. акад. Семенова, 1, г. Черноголовка, Московская обл., Российская Федерация, 142432

E-mail: ansles@yandex.ru, guzalia.rb@yandex.ru, glukiss@mail.ru, gvinok@yandex.ru, oyarm@mail.ru, wownik007@mail.ru

Разработаны новые литиевые твердотельные аккумуляторы с асимметричным полимерным нанокомпозитным электролитом на основе диакрилата полиэтиленгликоля и SiO_2 , использование которых позволило получить теоретическую емкость $LiFePO_4$ – катода. Нанокомпозитный полимерный твердотельный электролит может располагаться со стороны литиевого анода для реализации бездендритного и не подверженного коррозии высокообратимого осаждения/растворения лития, а микроколичества жидкого электролита, введенного на поверхность пористого LiFePO₄ – катода (так называемая «жидкофазная терапия») может обеспечивать легкую интеркалляцию лития в кристаллическую структуру оливина для обеспечения высокой заряд/разрядной циклируемости аккумулятора. Были исследованы электролиты на основе солей LiBF₄ и LiN(CF₃SO₂)₂ в гамма-бутиролактоне, диоксолане и диметоксиэтане методом ЯМР с импульсным граduehmom магнитного поля на ядрах 7Li и методом электрохимического импеданса. Показано, что «жидкофазная терапия» границы полимерный электролит/пористый катод эффективно увеличивает электродную реакцию только в случае состава жидкого электролита — $1 M LiN(CF_3SO_2)_2$ в смеси диоксолана и диметоксиэтана (1:2 по объему), в то время как $1\,M$ раствор $LiBF_4$ в гамма - бутиролактоне, из которого состоит нанокомпозитный полимерный гель-электролит, наоборот, делает границу непроводящей. Измеренные коэффициенты самодиффузии лития совместно с квантово-химическим расчетом энергий связи сольватных комплексов катиона лития с поверхностью наночастиц SiO2 указывают, что сольватация на границе нанокомпозит в 1 M LiN(CF₃SO₂)₂ в диоксолане / диметоксиэтане облегчена, а на границе с $1 M LiBF_4$ в гамма-бутиролактоне затруднена.

Ключевые слова: нанокомпозитный полимерный электролит, «жидкофазная терапия», твердотельный литиевый аккумулятор, LiFePO $_4$ катод

NEW LITHIUM SOLID STATE BATTERIES WITH ASYMMETRICAL POLYMER NANOCOMPOSITE ELECTROLYTE AND LIFePO₄ CATHODE, "LIQUID PHASE THERAPY" EFFECT

A.A. Slesarenko, G.R. Baymuratova, N.A. Slesarenko, G.Z. Tulibaeva, A.V. Yudina, O.V. Yarmolenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Acad. Semenova, 1, Chernogolovka, Moscow region, Russian Federation, 142432 E-mail: ansles@yandex.ru, guzalia.rb@yandex.ru, wownik007@mail.ru, glukiss@mail.ru, gvinok@yandex.ru, oyarm@mail.ru, a.s.@ icp.ac.ru, wownik007@mail.ru

Recently, asymmetric polymer nanocomposite electrolytes based on polyethylene glycol diacrylate and SiO₂ have been developed for new lithium solid-state batteries. The LiFePO₄ cathode's theoretical capacity might be found thanks to its application. To achieve non-dendritic and non-corrosive highly reversible deposition/dissolution of lithium, the nanocomposite polymer solid state

electrolyte can be positioned on the lithium anode side. In turn, the so-called "liquid-phase therapy" can facilitate the simple intercalation of lithium into the olivine crystal structure to ensure high charge/discharge cycleability of the battery by applying microscopic amounts of liquid electrolyte to the surface of the porous LiFePO₄ cathode. Electrolytes based on LiBF₄ and LiN(CF₃SO₂)₂ salts in gamma-butyrolactone, dioxolane, and dimethoxyethane were investigated by pulsed magnetic field gradient NMR on 7 Li nuclei and by electrochemical impedance. It has been demonstrated that only in the case of the liquid electrolyte composition—1 M LiN(CF₃SO₂)₂ in a mixture of dioxolane and dimethoxyethane (1:2 by volume)—does the "liquid-phase therapy" of the polymer electrolyte/porous cathode interface significantly increase the electrode reaction. The nanocomposite polymer gel electrolyte, which is a 1 M solution of LiBF₄ in gamma-butyrolactone, on the other hand, turns the border non-conductive. The calculated binding energies of the solvate complexes of the lithium cation with the surface of the SiO₂ nanoparticles and the measured lithium self-diffusion coefficients suggest that solvation at the nanocomposite interface in 1 M LiN(CF₃SO₂)₂ in dioxolane/dimethoxyethane is facilitated, whereas solvation at the interface in 1 M LiBF₄ in gamma-butyrolactone is challenging.

Key words: nanocomposite polymer electrolyte, "liquid-phase therapy", solid-state lithium battery, LiFePO $_4$ cathode

Для цитирования:

Слесаренко А.А., Баймуратова Г.Р., Слесаренко Н.А., Тулибаева Г.З., Юдина А.В., Ярмоленко О.В. Новые литиевые твердотельные аккумуляторы с асимметричным полимерным нанокомпозитным электролитом и LiFePO₄ катодом, эффект «жидкофазной терапии». *Рос. хим. ж. (Ж. Рос. хим. об-ва).* 2023. Т. LXVII. № 4. С. 43–47. DOI: 10.6060/RCJ.2023674.8.

For citation:

Slesarenko A.A., Baymuratova G.R., Slesarenko N.A., Tulibaeva G.Z., Yudina A.V., Yarmolenko O.V. New lithium solid state batteries with asymmetrical polymer nanocomposite electrolyte and LiFePO₄ cathode, "liquid phase therapy" effect. *Ros. Khim. Zh.* 2023. V. 67. N 4. P. 43–47. DOI: 10.6060/RCJ.2023674.8.

ВВЕДЕНИЕ

Для создания безопасных литиевых источников тока необходимо переходить от жидких органических воспламеняющихся электролитов к твердым. Они могут быть керамическими, полимерными или нанокомпозитными (НПЭ). У них есть существенный недостаток - плохой контакт между твердым пористым электродом и твердым электролитом. Для устранения данной проблемы существует подход жидкофазной терапии, который заключается в смачивании границы электрода микроколичеством жидкого электролита (рис. 1). Для подбора состава жидкого электролита (ЖЭ), обеспечивающего минимальное сопротивление на границах НПЭ/ЖЭ/электрод, необходимо учитывать энергии связей катионов лития с молекулами растворителей, входящих в сольватные оболочки с одной и другой стороны границы [1], а также энергию связи сольватированных молекул с поверхностью наночастиц, входящих в НПЭ.

Одним из основных причин, препятствующих применению аккумуляторов с металлическим

литием, являются противоречивые требования к Li-аноду и неорганическим пористым катодам.

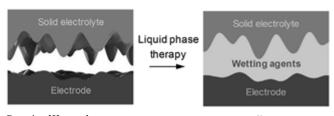


Рис. 1. «Жидкофазная терапия» контакта твердый электролит / электрод [2]

Со стороны анода апротонный жидкий электролит вызывает серьезную коррозию и рост дендритов, заметно подавляя обратимость осаждения/растворения лития. Со стороны неорганического катода жидкий электролит необходим, поскольку для катодных материалов требуются проникновение внутрь его объема сольватированных катионов лития для осуществления интеркалляции лития в кристаллическую решетку оливина (LiFePO₄), шпинели (Li₂MnO₄) или слоистых материалов (NMC).

Для одновременного удовлетворения противоречивых требований к аноду и катоду может быть использован асимметричный электролит, который может иметь разные функциональные слои на границе с анодом и катодом. В работе мы обобщили данные по созданию ассиметричного НПЭ [3-5] и механизмам транспорта заряда на границах литий/НПЭ/ЖЭ/ LiFePO₄.

МЕТОДИКА ЭКСПЕРИМЕНТА

Жидкие электролиты: 1) 1M раствор LiBF₄ в гамма-бутиролактоне (LiBF₄ –ГБЛ); 2) 1 М $LiN(CF_3SO_2)_2$ в смеси диоксолан/диметоксиэтан (2:1 об.) (LiTFSI –ДОЛ/ДМЭ). Пленки НПЭ получали по реакции полимеризации диакрилата полиэтиленгликоля в присутствии LiBF₄-ГБЛ и SiO₂ марки Аэросил 380 (7 нм) [6]. В качестве анода использовали Li-фольгу. Состав катода (мас. %): LiFePO₄/сажа/ПВДФ=75/20/5. Электрохимические ячейки CR 2032 собирали в Ar боксе. Тестирование ячеек проводили на приборе BTS 5V10mA (Shenzhen Neware electronic Co., LTD, Китай). Коэффициенты самодиффузии (КСД) для ядер ⁷Li измеряли методом ЯМР с импульсным градиентом магнитного поля (ЯМР ИГМП) на частотах 155.51 МГц на ЯМР-спектрометре Bruker AVANCE-III-400, оснащенном градиентным блоком diff60. Квантово-химическое моделирование проводили с помощью функционала Perdew-Burke-Erzernhof (РВЕ) с использованием расширенного базиса Si [14s11p3d/4s3p1d, B, C, N, O, F [10s7p3d/3s2p1d], Li [10s7p3d/4s3p1d], H [6s2p/2s1p]. Все расчеты проводили с использованием вычислительных возможностей Межведомственного суперкомпьютерного центра РАН (г. Москва) с помощью программы ПРИРОДА.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

НПЭ может располагаться со стороны литиевого анода для реализации бездендритного и не подверженного коррозии высокообратимого осаждения/растворения лития, а микроколичества ${\rm W}$ 3, введенного на поверхность пористого LiFePO4 — катода сможет обеспечить легкую интеркалляцию лития в кристаллическую структуру оливина. Схема аккумулятора с асимметричным электролитом приведена на рис. 2.

В работе [6] был разработан синтез новых НПЭ и испытания показали, что лучшая проводимость (4.5 мСм/см) и модуль упругости (16 МПа) у состава с 6 мас.% SiO_2 . В работе [3] было изучено поведение наночастиц SiO_2 на границе НПЭ/Li. Сопротивление сначала увеличивалось (максимум сопротивления на 10 день), но на 20-й день оно

уменьшалось и сохраняло минимальное значение в течение года. Это свидетельствует о защите поверхности лития, что подчеркивают многие авторы работ по $\Pi\Pi$ [7].

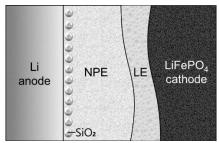


Рис. 2. Схема аккумулятора Li//LiFePO₄ с асимметричным нанокомпозитным полимерным электролитом (NPE), где LE – жидкий электролит

В работе [3] были протестированы ячейки Li//LiFePO₄ с HПЭ, но из-за высокого сопротивления на границе HПЭ/LiFePO₄ эффективность циклирования была недостаточная — 80 мAч/r на 50 цикле заряда-разряда. В работе [4] была изучена граница НПЭ с LiFePO₄ катодом. Для жидкофазной терапии использовали LiBF₄—ГБЛ (который является основным компонентом НПЭ) и LiTFSI — ДОЛ/ДМЭ. Показано, что при обработке границы LiBF₄—ГБЛ, электродная реакция на границе НПЭ/LiFePO₄ не идет, а при обработке LiTFSI — ДОЛ/ДМЭ сопротивление (R) электродной реакции минимально.

Для понимания такого поведения границы был использован метод ЯМР с ИГМП, который напрямую измеряет подвижность ядер 7 Li. Были исследованы как исходные растворы ЖЭ, так и их смеси, что моделирует взаимодействия на границе НПЭ/ЖЭ/катод (таблица).

В работе [5] приведены полные данные ЯМР с ИГМП по КСД на всех ядрах, входящих в состав компонентов электролитных систем, что позволило проследить за диффузией катионов, анионов и молекул каждого из растворителей. В таблице приведены только КСД лития.

Как видно из таблицы, наименьшей диффузионной подвижностью обладают ${\rm Li^+}$ в $\Gamma {\rm Б} \Pi$. Вероятно, это связано с самой высокой сольватирующей способностью более полярного $\Gamma {\rm E} \Pi$ ($\epsilon = 39$) среди всех используемых растворителей.

Наибольшая диффузионная подвижность катиона и аниона одинакового значения наблюдается для LiBF₄ в смеси растворителей ДОЛ/ДМЭ [5]. Это говорит о том, что катион и анион движутся вместе в виде ионной пары. Плохая диссоциация LiBF₄ в ДОЛ/ДМЭ (ϵ ~7) является причиной очень низкой проводимости электролита №2, что видно на рис. 3.

Таблииа 1

Коэффициенты диффузии ⁷Li и проводимость (σ) при 22 °C

№	Образец	LiBF ₄	LiTFSI	σ, мCм/см
1	LiBF4 − ГБЛ	1.8·10 ⁻¹⁰		6.2
2	LiBF4 – ДОЛ/ДМЭ	6.8·10 ⁻¹⁰		2.7
3	LiTFSI –ДОЛ/ДМЭ		$4.7 \cdot 10^{-10}$	9.1
4	LiBF ₄ – LiTFSI – ГБЛ/ДОЛ/ДМЭ	$3.3 \cdot 10^{-10}$		8.3

Для установления механизма ионного транспорта на границе НПЭ/ЖЭ были проведены квантово-химические расчеты энергий связи сольватных комплексов катиона лития с молекулами ГБЛ и ДОЛ/ДМЭ и энергии их адсорбции на поверхности наночастиц SiO_2 .

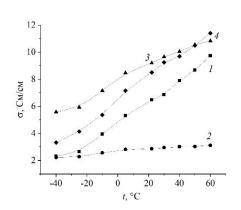


Рис. 3. Температурная зависимость проводимости электролитов. Цифры - составы ЖЭ (таблица)

Рассмотрены два типа структур, содержащих контактную ионную пару и катион, и анион, разделенные молекулами растворителя (рис. 4). Теоретические результаты согласуются с данными ЯМР по подвижности ионов, из чего следует более высокая степень диссоциации LiBF $_4$ в ГБЛ. Небольшое увеличение σ для раствора LiTFSI в ДОЛ/ДМЭ по сравнению с раствором LiBF $_4$ в ГБЛ может быть связано с увеличением подвижности ионов, что компенсируется их меньшим количеством.

При расчете энергии комплексов найдено, что сольватные комплексы ГБЛ более стабильны по сравнению с сольватными комплексами ДОЛ/ДМЭ. Для образования вакансии в координационной сфере у наночастицы за счет удаления одной из молекул растворителя требуется более высокая энергия: 14 и 3—9 ккал/моль для ГБЛ и ДОЛ/ДМЭ соответственно.

Далее были проведены испытания аккумуляторов Li//LiFePO₄. На рис. 5 представлена зависимость разрядной емкости от числа циклов ячеек Li/H Π 3/LiFePO₄ без и с введением электролита

LiTFSI — ДОЛ/ДМЭ. Видно, что лучшие показатели по величине и стабильности разрядной емкости у ячейки с обработанной поверхностью катода — 170~MAy/r, что является теоретически достижимым показателем емкости для данного катодного материала.

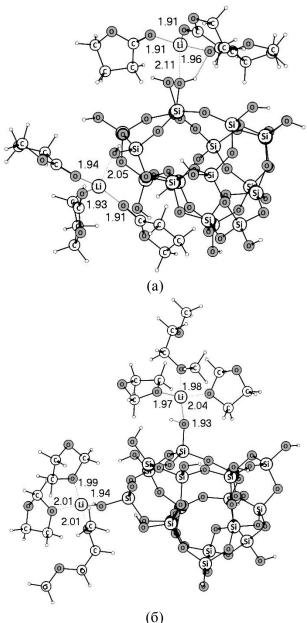


Рис. 4. М олекулярные структуры комплексов а) $(SiO_2)_{17}(Li^+\Gamma S \Pi_3)_2$, б) $(SiO_2)_{17}(Li^+\Pi S \Pi_3)_2$

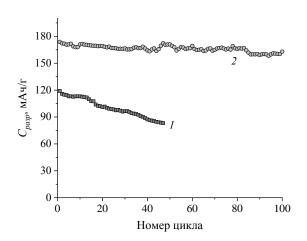


Рис. 5. Зависимость разрядной емкости от номера цикла для ячеек Li/HП \Im /LiFePO₄, I – без и 2 с LiTFSI – ДОЛ/ДМ \Im (скорости C/10, 2.6–3.8 B)

выводы

Впервые предложен асимметричный НПЭ, который состоит из трех функционализированных слоев. Со стороны литиевого анода адсорбируется защитный слой из наночастиц SiO_2 , внутри электролита — полимерный химически сшитый гель, а со стороны LiFePO₄ — катода - микроколичества 1 М LiTFSI в ДОЛ/ДМЭ. Методами ЯМР с квантово-химическим моделированием показано, что влияние «жидкофазной терапии» может быть связано с более низким перенапряжением реакции на катоде из-за более высокой энергетической доступности ионов лития в ДОЛ/ДМЭ.

Работа выполнена по теме Государственного задания. Номер гос. регистрации AAAA-A19-

119071190044-3.

Измерения ЯМР выполнены на оборудовании Аналитического центра коллективного пользования ФИЦ ПХФ и МХ РАН и центра коллективного пользования ФГБУН ИФТТ имени Ю.А. Осипьяна РАН.

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

The authors declare the absence a conflict of interest warranting disclosure in this article.

ЛИТЕРАТУРА REFERENCES

- Su C.-C., He M., Amine R., Rojas T., Cheng L., Ngo A.T., Amine K. Energy Environ. Sci. 2019. V. 12. P. 1249–1254. DOI: 10.1039/C9EE00141G.
- Zhao C.-Z., Zhao B.-C., Yan C., Zhang X.-Q., Huang J.-Q., Mo Y., Xu X., Li H., Zhang Q. Energy Stor. Mater. 2020. V. 24. P. 75–84. DOI: 10.1016/j.ensm.2019.07.026.
- Baymuratova G.R., Slesarenko A.A., Yudina A.V., Yarmolenko O.V. Russ. Chem. Bulletin, Int. Ed. 2018. V. 67. N 9. P. 1648. DOI: 10.1007/s11172-018-2272-7.
- Baymuratova G.R., Khatmullina K.G., Yudina A.V., Yarmolenko O.V. Russ. J. Electrochem. 2022. V. 58. N 4. P. 329–340. DOI: 10.1134/S1023193522030041.
- Chernyak A.V., Slesarenko N.A., Slesarenko A.A., Baymuratova G.R., Tulibaeva G.Z., Yudina A.V., Volkov V.I., Shestakov A.F., Yarmolenko O.V. Membranes. 2022. V. 12. 1111. DOI: 10.3390/membranes12111111.
- Yudina A.V., Berezin M.P., Baymuratova G.R., Shuvalova N.I., Yarmolenko O.V. Russ. Chem. Bulletin, Int. Ed. 2017. V. 66. N. 7. P. 1278–1283. DOI: 10.1007/s1172-017-1885-6.
- Yarmolenko O.V., Yudina A.V., Khatmullina K.G. Russ. J. Electrochem. 2018. V. 54. P. 325–343. DOI: 10.1134/S10231935 18040092.

Поступила в редакцию 05.06.2023 Принята к опубликованию 05.11.2023

Received 05.06.2023 Accepted 05.11.2023