COMPOSITE MATERIALS BASED ON Al2O3 WITH A TWO-LAYER POLYMER COATING OF ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE AND POLYETHYLENE: SYNTHESIS, PROPERTIES AND PROCESSING BY 3D PRINTING BY SELECTIVE LASER SINTERING

  • С. С. Гусаров ФГБУН Федеральный Исследовательский Центр химической физики им. Н.Н. Семенова Российской академии наук
  • О. И. Кудинова ФГБУН Федеральный Исследовательский Центр химической физики им. Н.Н. Семенова Российской академии наук
  • Н. Г. Рывкина ФГБУН Федеральный Исследовательский Центр химической физики им. Н.Н. Семенова Российской академии наук
  • И. А. Маклакова ФГБУН Федеральный Исследовательский Центр химической физики им. Н.Н. Семенова Российской академии наук
  • Т. А. Ладыгина ФГБУН Федеральный Исследовательский Центр химической физики им. Н.Н. Семенова Российской академии наук
  • Л. А. Новокшонова ФГБУН Федеральный Исследовательский Центр химической физики им. Н.Н. Семенова Российской академии наук
Keywords: ultra-high molecular weight polyethylene, in-situ polymerization, selective laser sintering, double-layer polymer coat

Abstract

Highly filled powder composites based on Al2O3 particles with a two-layer coating of ultra-high molecular weight polyethylene and low molecular weight polyethylene (Al2O3/UHMWPE/PE) were obtained by polymerization filling (in-situ) by successive two-stage polymerization, with a single-layer coating of ultra-high molecular weight polyethylene (Al2O3/UHMWPE) and low molecular weight polyethylene (Al2O3/PE) in a one-step process for 3D printing applications by selective laser sintering. Al2O3 corundum spheres with an average particle size of 20 μm were used as a filler, which provided the composite particles with a spherical shape and the necessary fluidity in the printer chamber. The melting temperature of nascent composites is higher than after melting, which widens the "sintering window", and is important for 3D printing by selective laser sintering. The dynamic loss modulus in the α-relaxation region, which characterizes the mobility of polymer chains in the intercrystalline (amorphous) layer, is higher for Al2O3/UHMWPE/PE composites than for Al2O3/UHMWPE, and their plasticity under uniaxial tension also increased. The heat resistance of the synthesized composites, estimated by the method of dynamic mechanical analysis, is 20–33 °C higher than that of ultrahigh molecular weight polyethylene. The content of the filler, the arrangement of polymer layers on the surface of the filler particles, and their composition affect the strength properties and the nature of the deformation of composites under uniaxial tension. The resulting composites with a filling of 10 and 30 vol. % had high strength and deformation properties. Composite powders have been successfully tested in 3D printing by selective laser sintering, warping and shrinkage of parts were not observed.

References

Tan H.W., Choong Y.Y.C., Kuo C.N., Low H.Y., Chua Ch.K. Prog. in Mat. Sci. 2022. V. 127. P. 100945. DOI: 10.1016/j.pmatsci.2022.100945.

Gu D.D., Meiners W., Wissenbach K., Poprawe R. Inter. Mat. Rev. 2012. V. 57. P. 133–164. DOI:10.1179/1743280411Y. 0000000014.

Brighenti R., Cosma M.P., Marsavina L., Spagnoli A., Terzano M. J. Mater. Sci. 2021. V. 56. N 2. P. 961–998. DOI: 10.1007/s10853-020-05254- 6.

Zhu X., Yang Q. Plastics Rubber and Comp. 2020. V. 49. P. 1–11. DOI: 10.1080/14658011.2020.1718321.

Ziegelmeier S., Panagiotis C., Wöllecke F., Tuck C.J. J. of Mat. Processing Tech. 2015. V. 215. P. 239–250. DOI: 10.1016/j.jmatprotec.2014.07.029.

Goodridge R.D., Tuck C.J., Hague R.J.M. Progress in Materials Sci. 2012. V. 57. P. 229–267. DOI: 10.1016/j.pmatsci. 2011.04.001.

Blümel C., Sachs M., Laumer T., Winzer B., Schmidt J., Scmidt M., Peukert W., Wirth Kari-Ernst. Rapid Prototyping J. 2015. V. 21. P. 697–704. DOI: 10.1108/RPJ-07-2013-0074.

Ushakova T.M., Starchak E.E., Gostev S.S., Grinev V.G., Krasheninnikov V.G., Gorenberg A.Ya., Novokshenova L.A. Russ. J. Phys. Chem. B. 2020. V. 14. P. 66–71. DOI: 10.1134/S1990793120030124.

Yang C., Huawei Z., Mei L., Pengbo L. J. Appl. Polym. Sci. 2013. V. 123. P. 945–953. DOI:10.1002/app.38374.

Yannick L.W., Proes F., Imgrund P., Luinstra G.A. Macromol. Mater. Eng. 2021. V. 306. DOI: 10.1002/mame.202100477.

Song C., Huang A., Yang Y., Xiao Z., Yu Jia-kuo. Rapid Prototyping J. 2017. V. 23. P. 1069–1078. DOI: 10.1108/RPJ-09-2015-0119.

Wencke Y.L., Luinstra G.A., Duchateau R., Proes F., Imgrund P., Evenson J., Emmelmann C. European Pol. J. 2021. V. 163. P. 5–8. DOI: 10.1016/j.eurpolymj.2022.110936.

Ryvkina N.G., Nezhnyi P.A., Kudinova O.I., Chmutin I.A., Grinev V.G., Novokshenova L.A. Russ. J. Phys. Chem. B. 2019. V. 13. N 5. P. 831–837. DOI: 10.1134/S1990793119050105.

Grinev V.G., Krasheninnikov V.G., Zabolotnov A.S., Ladygina T.A., Brevnov P.N., Novokshonova L.A., Berlin A.A. Pol. Sci. Ser. D. 2018. V. 11. N 2. P. 202–208. DOI: 10.1134/S1995421218020089.

Ferreira E.H.C., Fechine G.J.M. J. Appl. Polym. Sci. 2020. V. 137. DOI: 10.1002/app.49604.

Kumar A., Choudhary V., Khanna R., Tripathi S.N., Ikram-UI-Hag M., Sahajwalla V. J. Appl. Polym. Sci. 2016. V. 133. P. 1–11. DOI: 10.1002/app.43389.

Novokshonova L.A., Meshkova I.N., Ushakova T.M., Grinev V.G., Ladigina T.A., Glutseva N.M., Kudinova O.I., De Boer S. J. Appl. Polym. Sci. 2003. V. 87. P. 577–583. DOI: 10.1002/app.11186.

Goodridge R.D., Hague R. J.M., Tuck Ch. J. J. Mat. Proc. Technology. 2010. V. 210. P. 72–80. DOI: 10.1016/j.jmatprotec.2009.08.016.

Published
2024-04-09
How to Cite
Гусаров, С., Кудинова, О., Рывкина, Н., Маклакова, И., Ладыгина, Т., & Новокшонова, Л. (2024). COMPOSITE MATERIALS BASED ON Al2O3 WITH A TWO-LAYER POLYMER COATING OF ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE AND POLYETHYLENE: SYNTHESIS, PROPERTIES AND PROCESSING BY 3D PRINTING BY SELECTIVE LASER SINTERING. Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal), 67(4), 3-7. https://doi.org/10.6060/rcj.2023674.1
Section
Статьи