ДЕГРАДАЦИЯ НЕФТИ И НЕФТЕПРОДУКТОВ БИОКОМПОЗИЦИЯМИ НА ОСНОВЕ ГУМИНОВЫХ КИСЛОТ ТОРФОВ И МИКРООРГАНИЗМОВ-НЕФТЕДЕСТРУКТОРОВ

  • E.D. Dmitrieva Тульский государственный университет
  • V.I. Grinevich Ивановский государственный химико-технологический университет
  • M.M. Gertsen Тульский государственный университет
Ключевые слова: гуминовые кислоты, микроорганизмы-нефтедеструкторы рода Rhodococcus, биокомпозиции, нефть, нефтепродукты, биодеградация, детоксикация, коэффициенты детоксикации

Аннотация

В данной работе приведен литературный обзор применения гуминовых кислот в экоадаптивных технологиях, биологических и биотехнологических методов ремедиации объектов окружающей среды от нефтяного загрязнения, а также суммированы результаты исследований по разработке биокомпозиций на основе гуминовых кислот торфов и микроорганизмов-нефтедеструкторов рода Rhodococcus для инактивации нефти и нефтепродуктов в почвенных и водных средах при различных абиотических условиях. Биокомпозиции обладают повышенной диспергирующей, солюбилизирующей, стабилизирующей и биодеградирующей способностью по отношению к нефти и нефтепродуктам в пресной, соленой воде и в условиях пониженной температуры. Показана перспективность комбинированного применения бактерий-нефтедеструкторов и гуминовых кислот в составе биокомпозиций как биотехнологического направления в разработке эффективных биопрепаратов для деструкции нефтяных углеводородов. Различия в инактивирующей способности биокомпозиций по отношению к нефти и нефтепродуктам связаны со способностью штаммов микроорганизмов формировать биопленку на поверхности гуминовых кислот. Наиболее универсальными в водных средах с максимальной биодеградационной способностью являются биокомпозиции «Гуминовые кислоты сфагнового верхового торфа + R. erythropolis S67»; «Гуминовые кислоты тростникового низинного + R. erythropolis S67»; «Гуминовые кислоты сфагнового верхового торфа + R. erythropolis Х5». Стабилизирующая способность биокомпозиций определяется происхождением гуминовых кислот и не зависит от выбранного штамма бактерий. Высокая биодеградабельность биокомпозиций обусловлена синергизмом действия бактерий-нефтедеструкторов и гуминовых кислот в условиях нефтяного загрязнения: микроорганизмы окисляют углеводородные соединения, растворяя или эмульгируя их посредством выделения биосурфактантов; гуминовые кислоты, выступая в качестве матрикса при формировании биопленки, облегчают самопроизвольную адсорбцию микроорганизмов рода Rhodococcus на границе нефть – вода.

Литература

Leonteva M.M., Bogatyrev Yu. V., Syundyukova K.V., Dmitrieva E.D. Sorption ability of humic substances from different origin peats of the tula region in relation to zinc ions. Izvestiya TulGU. Estestvennye nauki. 2017. V. 1. P. 4957 (In Russian).

Popov A.I. Humic substances: properties, structure, formation. SPb.: Izd-vo S. Peterb. un-ta. 2004. 248 p. (In Russian).

Orlov D.S. Soil chemistry. M.: Izd-voMosk. un-ta. 1992. 295 p. (In Russian).

Semenov V.M., Tulina A.S., Semenova N.A., Ivannikova L.A. Humification and non-humification ways of stabilizing organic matter in soil. Pochvovedenie. 2013. N 4. P. 393–407. DOI:10.7868/S0032180X13040114. (In Russian).

Proidakov A. G. Humic acids from mechanically treated coals: A review. Solid Fuel Chem. 2009. V. 43. N 1. P. 9–14. DOI: 10.3103/S0361521909010030.

Romaris-Hortas V., Moreda-Pineiro A., Bermejo-Barrera P. Application of microwave energy to speed up the alkaline extraction of humic and fulvic acids from marine sediments. Anal ChimActa. 2007. V. 602. P. 202–210. DOI:10.1016/j.aca.2007.09.022.

Schulten H. R., Schnitzer M. A state of the art structural concept for humic substances. Naturwissenschaften. 1993. V. 80. P. 29–30. DOI:10.1007/BF01139754.

Shirshova L.T., Ghabbour E.A., Davies G. Fluorescence spectroscopy studies of humic substance fractions isolated from permanently frozen sediments of Yakutian coastal low-lands. Geoderma. 2006. V. 133. P. 204–216. DOI:10.1016/j.geoderma.2008.11.026.

Jezierski A., Czechowski F., Jerzykiewicz M., Drozd J. EPR investigations of structure of humic acids from compost, soil, peat and soft brown coal upon oxidation and metal uptake. Appl Magnetic Resonance. 2000. V. 18. P. 127–128. DOI:10.1007/BF03162104.

Martyniuk I., Więckowska J. Adsorption of metal ions on humic acids extracted from brown coals. Fuel Processing Technology. 2003. V. 84. P. 23–36. DOI:10.1016/S0378-3820(02)00246-1.

Gostishcheva M.V., Fedko I.V., Shchegolikhina A.I. Evalua-tion of the molecular parameters of humic acids in peat obtained by different methods. Novye dostizheniya v sozdanii lekarstvennykh sredstv. 2006. P. 71–74. (In Russian).

Kovtun A.I., Khilko S.L., Lishtvan I.I. Humic acids of peat and preparations based on them. Prirodopolzovanie. 2004. N 10. P. 114–119. (In Russian).

Lishtvan I.I. Fractions of humic acids of peat and their properties Prirodopolzovanie. 1996. N 1. P. 4–6. (In Russian).

Ivanov A.A., Maltseva E.V., Yudina N.V., Matis E.Ya. The structure of humic acids and the nature of their adsorption capacity in relation to biocides. Trudy IV Vserossiyskoy konferentsii «Guminovye veshchestva v biosfere». 2007. P. 447–455. (In Russian).

Kaniskin M.A., Izosimov A.A., Terekhova V.A., Yakimenko O.S., Pukalchik M.A. Influence of humic preparations on the bioactivity of soil with phosphogypsum .Teoreticheskaya i prikladnaya ekologiya. 2011. N 1. P. 87–95. (In Russian).

Yakimenko O.S., Terekhova V.A. Humic preparations and assessment of their biological activity for certification puposes. Pochvovedenie. 2011. N 11. P. 1334–1343. (In Russian).

Kulikova N.A., Davidchik V.N., Tsvetkova E.A., Koroleva O.V. Interaction of coal humic acids with fungal laccase. Adv. Microbiol. 2013. V. 3. P. 145–153. DOI:10.4236/aim.2013.32023.

Klyayn O.I., Kulikova N.A., Stepanova E.V. Obtaining and characterization of biological activity of biological products obtained by biosolubilization of brown coal with white rot basidiomycetes. Biotekhnologiya. 2013. V. 4. P. 65–83. (In Russian).

Canellas L.P., Zandonodi D.B., Busato J.G. Bioactivity and chemical characteristics of humic acids from tropical soils sequence. SoilScience. 2008. V. 173. N 9. P. 624–637.

Kornilaeva G.V., Perminova I.V., Gilyazova A.V. Humic substances as promising compounds for the creation of microbicidal preparations. Rossiyskiy immunologicheskiy zhurnal. 2010. V. 4. N 3. P. 255–260. (In Russian).

Haritash A.K., Kaushik C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater. 2009. V. 169. N 1–3. P. 1–15. DOI:10.1016/j.jhazmat.2009.03.137.

TR 002–13787869–2013. Remediation of oil-contaminated soils, soils and drill cuttings using the drug "Gumikom". 2014. 78 p. (In Russian).

Bambalov N.N., Smirnova V.V., Nemkovich A.S. Technological indicators of the efficiency of the extraction of humic substances at different ratios of peat and extractant. Prirodopolzovanie. 2012. N 21. P. 244-247. (In Russian).

Krasnoberskaya O.G., Sokolov G.A., Simakina I.V. Comparative assessment of the biological activity of peat humic substances isolated by different methods. Prirodopolzovanie. 2012. N 21. P. 249–254. (In Russian).

Kholodov V.A., Butneva I.A., Grechishcheva N. Yu. Influence of purification methods on the structure and yield of humic acids during their extraction from typical chernozem. Agrokhimicheskiy vestnik. 2008. N 5. P. 31–33. (In Russian).

Vaysman Ya.I., Glushankova I.S., Rudakova L.V. Development of technology for remediation of oil-contaminated soils and grounds using the humic preparation "Gumikom". Neftyanoek hozyaystvo. 2013. N 10. P. 128–131. (In Russian).

Kim D., Choi K.Y., Yoo M., Zylstra G., Kim E. Biotechnological potential of Rhodococcus biodegradative pathways. J. Microbiol. Biotechnol. 2018. V. 28. N 7. P. 1037–1051. DOI:10.4014/jmb.1712.12017.

Shaydullina I.A., Antonov N.A., Kolesnikova N.E. Testing of new biotechnologies for the reclamation of oil-contaminated lands in the conditions of OAO TATNEFT. Materialy nauchnoy sessii uchenykh Almetevskogo gosudarstvennogo neftyanogo instituta. 2013. N 1. P. 168–173. (In Russian).

Ivasishin P.L., Maryutina T.A., Savovina E.Yu. The effectiveness of the use of biological products, humates and sorbents to reduce the residual content of petroleum products in peats during reclamation. Zashchita okruzhayushchey sredy v neftegazovom komplekse. 2011. N 5. P. 19–23. (In Russian).

Yakimenko O.S., Terekhova V.A. Humic preparations and assessment of their biological activity for certification purposes. Pochvovedenie. 2011. N 11. P. 1334–1343. (In Russian).

Burgos W.D., Pisutpaisal N., Tuntoolavest M. Biodegradation of 1-naphthol in the presence of humic acid. Environ. Eng. Sci. 2000. V. 17. P. 343–351. DOI:10.1089/ees.2000.17.343.

Laor Y., Strom P.F., Farmer W.J. Bioavailability of phenanthrene sorbed to mineral-associated humic acid. Water Res. 1999. V. 33. P. 1719–1729.

Ortega-Calvo J.J., Saiz-Jimenez C. Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens Strain isolated from soil. Appl. Environ. Microbiol. 1998. V. 64. N 8. P. 3123–3126.

Kastner M., Mahro B. Microbal degradation of polycyclic aromatic hedrocarbons in soils affected by the organic matrix of compost. Appl. Microbiol. Biotechnol. 1996. V. 44. N 5. P. 668–675.

Smith K.E., Thullner M., Wick L.Y., Harms H. Sorption to humic acids enhances polycyclic aromatic hydrocarbon bio-degradation. Environ. Sci. Technol. 2009. V. 43. N 19. P. 7205–7211. DOI:10.1021/es803661s

Puglisi E., Cappa F., Fraqoulis G. Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere. 2007. V. 67. N. 3. P. 548–556.DOI:10.1016/j.chemosphere.2006.09.058.

Hoffmann K., Popawski D., Huculak-Mczka M. Assessment of efficiency of humic acids extraction process using different fineness of lignite. ECOL Chem. 2010. V. 4. N 2. P. 377–381.

Shchukina V.D., Kholodov V.A., Parfenova A.M., Lazareva E.V., Perminova I.V. Stabilizing effect of humicclay complexes on the formation of direct oil-water emulsions in seawater. Khimicheskaya fizika i stroenie veshchestva, k 90-letiyu V.I. Goldanskogo. 2013. P. 101–104. (In Russian).

Terashimaa M., Fukushimab M., Tanakaa S. Influence of pH on the surface activity of humic acid: micellelike aggregate formation and interfacial adsorption. Colloids and Surfaces. A: Physicochem. Eng. Aspects. 2004. V. 247. P. 77–83. DOI:10.1016/J.COLSURFA.2004.08.028.

Funtikova T.V., Puntus I.F., Akhmetov L.I., Appazov N.O., Narmanova R.A., Filonov A.E. Properties of microorganisms able to degradation of oil hydrocarbons in a wide temperature range. Actual science. 2015. V. 1. N 3. P. 18–19. (In Russian).

Sharma A., Mishra M., Shukla A.K., Kumar R., Abdin M.Z., Chowdhuri D.K. Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster. J. Hazard. Mater. 2012. V. 221–222. P. 275–287. DOI:10.1016/j.jhazmat.2012.04.045.

Al-Hawash A.B., Alkooranee J.T., Abbood H.A., Zhang J., Sun J., Zhang X., Ma F. Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field. Iraq. Biotechnol. Rep. 2018. V. 17. P. 104–109. DOI:10.1016/j.btre.2017.12.006.

Panda S., Kar R., Panda C. Isolation and identification of petroleum hydrocarbon degrading microorganisms from oil contaminated environment. International Journal of Environ-mental Science Technology. 2013. V. 3. N 5. P. 1314–1321.

Lee C.H., Shin H S., Kang K.H. Chemical and spectroscopic characterization of peat moss and its different humic fractions (Humin, Humic acid and fulvic acid). Journal of Soil and Groundwater. 2004. V. 9. N 4. P. 42–51.

Liu S., Guo C., Liang X., Wu F., Dang Z. Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B. Ecotoxicol. Environ. Saf. 2016. V. 129. P. 210–218.DOI:10.1016/j.ecoenv.2016.03.035.

Varjani S.J., Gansounou E. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresour. Technol. 2017. V. 245. P. 1258–1265. DOI:10.1016/j.biortech.2017.08.028.

Yakimov M.M., Timmis K.N., Golyshin P.N. Obligate oil-degrading marine bacteria. Curr. Opin. Biotechnol. 2007. V. 18. P. 257–266. DOI:10.1016/j.copbio.2007.04.006.

Maiti A., Das S., Bhaacharyya N. Isolation and characterization of a new bacterial strain from petroleum oil contaminated soil, India. Journal of Science. 2012. V. 2. N 2. P. 103–108.

Zhen-Yu W., Ying X.U., Hao-Yun W., Jian Z., Dong-Mei G., Li F.M., Xing B. Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms. Pedosphere. 2012. V. 22. N 5. P. 717–725. DOI:10.1016/S1002-0160(12)60057-5.

Das K., Mukherjee A.K. Crude petroleumoil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleumoil contaminated soil from North-East India. Bioresour. Technol. 2007. V. 98. P. 1339–1345. DOI:10.1016/j.biortech.2006.05.032.

Husaini A., Roslan H.A., Hii K.S.Y., Ang C.H. Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World J. Microbiol. Biotechnol. 2008. V. 24. P. 2789–2797. DOI:10.1007/s11274-008-9806-3.

Moutsatsou A., Gregou M., Matsas D., Protonotarios V. Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities. Chemo-sphere. 2006. V. 63. P. 1632–1640. DOI:10.1016/j.chemosphere.2005.10.015.

Calvillo Y.M., Alexander M. Mechanism of microbial utilization of biphenyl sorbed to polyacrylic beads. Appl. Microb. Biotechn. 1996. V. 45. N. 3. P. 383–390. DOI:10.1007/s002530050700.

Foster J.W. Hydrocarbons as substrate for microorganisms. J. Microbiol. Serol. 1962. V. 28. P. 241–274.

Grötzschel S., Köster J., Abed R.M.M., de Beer D. Degradation of petroleum model compounds immobilized on clay by a hypersaline microbial material. Biodegradation. 2002. V. 13. N 4. P. 273–283. DOI:10.1023/a:1021263009377.

Plaza C., Xing B., Fernandez J.M. Binding of polycyclic aromatic hydrocarbons by humic acids formed during composting. Environmental Pollution. 2009. V. 157. N 1. P. 257–263. DOI:10.1016/j.envpol.2008.07.016.

Jobson A., Cook F.D., Westlake D.W.S. Microbial utilization of crude oil. Appl. Microbiol. 1972. V. 23. P. 1082–1089. DOI:10.1128/AEM.23.6.1082-1089.1972.

Filip Z., Demnerova K. Humic substances as a natural factor lowering ecological risk in estuaries. Environmental Security in Harbors and Coastal Areas. 2007. P. 343–353.

Nebbioso A., Piccolo A. Basis of a Humeomics Science: Chemical Fractionation and Molecular Characterization of Humic Biosupra structures. Biomacromolecules. 2011. V. 12. N 4. P. 1187–1199. DOI:10.1021/bm101488e.

Uhlik O., Wald J., Strejcek M., Musilova L., Ridl J., Hroudo-va M., Macek T. Identification of Bacteria Utilizing Biphenyl, Benzoate, and Naphthalene in Long-Term Contaminated Soil. PLoS ONE. 2012. V. 7. N 7. P. 1–10. DOI: 10.1371/journal.pone.0040653.

Lia B., Zhanga X., Guoa F., Wub W., Zhang T. Characterization of tetracycline resistant bacterial community in saline activated sludge using batchstress incubation with high-through put sequencing analysis. Water research. 2013. V. 47. P. 4207–4216. DOI:10.1016/j.watres.2013.04.021.

Rubtsova E.V., Krivoruchko A.V., Yarullina D.R., Bogachev M.I., Kim A.S., Kuyukina M.S., Ivshina I.B. The effect of physical-chemical properties of Rhodococcus actinobacteria on their adhesion to polystyrene and n-hexadecane. Fundamentalnye issledovaniya. 2013. N 4. P. 900–904. (In Russian).

Perry C.T., Berkeley A., Smithers S.G. Microfacies characteristics of a tropical, mangrove-fringed shoreline, Cleveland Bay, Queensland, Australia: sedimentary and taphonomic controls on mangrove facies development. J Sediment Res. 2008. V. 78. P. 77–97. DOI:10.2110/jsr.2008.015.

De Carvalho A.A.T., Mantovani H.C., Paiva A.D., De Melo M.R. The effect of carbon and nitrogen sources on bovicin HC5 production by Streptococcus HC5. J. App. Mic. 2009. V. 107. N 1. P. 339–347. DOI: 10.1111/j.1365-2672.2009.04212.x. DOI:10.1111/j.1365-2672.2009.04212.x.

Shvetsov V.N., Morozova K.M., Semenov M.Yu., Pushnikov M.Yu., Stepanov A.S., Nikiforov S.E. Oilcontaining wastewater treatment by biomembrane methods Vodosnabzhenie i sanitarnaya tekhnika. 2008. N 3. P. 39–42. (In Rus-sian).

Gertsen M.M., Dmitrieva E.D. Utilization of hexadecane by biocomposition based on humic acids of peats and oil-degrading microorganisms of the genus Rhodococcus in aqueous media. Moroccan Journal of Chemistry. 2020. V. 8. N 2. Р. 392–399.

Dang N.P., Landfald B., Willassen N.P. Biological surfaceactive compounds from marine bacteria. Environ. Technol. 2015. V. 37. N 9. P. 1151–1158.DOI: 10.1080/09593330.2015.1103784.

Belyakov A.Yu., Pleshakova E.V. Screening of microorganisms-destructors components of drilling fluids. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Khimiya. Biologiya. Ekologiya. 2013. V. 13. N 4. P. 37–42. (In Russian).

Berdichevskaya M.V. Features of the physiology of Rhodo-cocci in the developed oil deposits. Mikrobiologiya.1989. V. 58. N 1. P. 60–65. (In Russian).

Nechaeva I.A., Lyong T.M., Satina V.E. Influence of the physiological characteristics of the bacteria genus rhodococcus on the degradation n-hexadecane. Izvestiya TulGU. Estestvennye nauki. 2016. V. 1. P. 90–98. (In Rus-sian).

Zampolli J., Collina E., Lasagni M., Gennaro P. Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism. Applied and Environmental Microbiology. 2014. V. 4. N 73. P. 1–9. DOI:10.1186/s13568-014-0073-4.

Karimova V.T., Dmitrieva E.D. Binding capacity of huminic substances from different origin peats of the Tula region in the presence microorganisms degraders of oil Rhodococcus related to hexadecan. Vestnik TvGU. Seriya: Khimiya. 2018. V. 2. P. 145–157. (In Russian).

Dmitrieva E.D., Leonteva M.M., Osina K.V. Physico-chemical properties of humic substances of peats of the tula region. Vestnik TvGU. Seriya: Khimiya. 2019. V. 35. N 1. P. 134–146. DOI:10.17223/24135542/7/1. (In Russian).

Dmitrieva E.D., Karimova V.T., Nechaeva I.A. The effect of humic substances from different origin peats of the Tula region on the growth of microbial degraders of oil Rhodococcus erythropolis S67 and Rhodococcus erythropolis X5. Izvestiya TulGU. Estestvennye nauki. 2017. N 2. P. 60–68. (In Russian).

Dmitrieva E.D., Leonteva M.M., Karimova V.T. Investigation of the influence of humic substances of peats on the growth parameters of microorganisms degraders of oil Rho-dococcus genus in the presence of hexadecane. Uchenye zapiski Krymskogo federalnogo universiteta imeni V.I. Vernadskogo. Biologiya. Khimiya. 2018. V. 4(70). N 2. P. 43–56. (In Russian).

Roberts T.L. Improving nutrient use efficiency. Turk. J. Agric. 2008. V. 32. P. 177–182.

Gertsen M.M., Dmitrieva E.D. Utilization of hexadecane by biocomposition based on humic acids of peats and oil-degrading microorganisms of the genus Rhodococcus in aqueous media. Moroccan Journal of Chemistry. 2020. V. 8. N 2. Р. 392–399.

Gertsen M.M., Dmitrieva E.D. Influence of peats humic substances on the state of drops of crude oil and oil products in the presence of oil degrading microorganisms of the genus Rhodococcus. Vestnik TvGU. Seriya: Khimiya. 2021. V. 44. N 2. P. 69–79. DOI:10.26456/vtchem2021.2.7. (In Russian).

Dmitrieva E.D, Efimova E.N., Siundiukova K.V., Perelomov L.V. Surface properties of humic acids from peat and sapropel of increasing transformation. Environmental chemistry letters. 2015. V. 13. N 2. P. 197–202. DOI:10.1007/s10311-015-0497-3.

Salgado-Brito R., Neria M.I., Mesta-Howard A.M., Cedillo F.D., Wang E.T. Oxidation of solid paraffin (C11-40) by Pseudomonas aeruginosa MGP-1. Annals of Microbiology. 2007. N 57. P. 321–328. DOI:10.1007/BF03175067.

Gertsen M.M., Dmitrieva E.D. Ability of humic acids of peats to stabilize oil and petroleum product emulsions. Vestnik TvGU. Seriya: Khimiya. 2020. V. 41. N 3. P. 103–111. DOI:10.26456/vtchem2020.3.11. (In Russian).

Gertsen M.M., Dmitrieva E.D. Stabilizing ability of humic substances and micro-organisms of the genus Rhodococcus in the relation to oil products. Vestnik TvGU. Seriya: Khimi-ya. 2020. V. 41. N 3. P. 112–123. DOI:10.26456/vtchem2020.3.1. (In Russian).

Grechishcheva N.Yu., Perminova I.V., Kholodov V.A., Mesh-cheryakov S.V. Stabilization of oilin-water emulsions with highly dispersed particles: role in self-cleaning processes and prospects for practical application. Rossiyskiy khimicheskiy zhurnal. 2015. V. 59. N 4. P. 34–50. (In Russian).

Gertsen M.M., Dmitrieva E.D. Binding capacity of humic substances of peats in the relation to petroleum products in the presence of microorganisms of the genus Rhodococcus in aqueous media. Teoreticheskaya i prikladnaya ekologiya. 2021. N 2. P. 142–148. DOI:10.25750/1995-4301-2021-2-142-148. (In Russian).

Gertsen M.M., Dmitrieva E.D. Study of the binding and detoxifying ability of a biocomposition based on humic acids of peat and microorganisms-oil destructors of the genus Rhodococcus in relation to oil products in various ecosystems (water and soil). Aktualnaya biotekhnologiya. 2020. V. 34. N 3. P. 425–428. (In Russian).

Dmitrieva E.D., Gertsen M.M., Gorelova S.V. The influence of humic acids on the sowing qualities of cockweed in oil pollution. Khimiya rastitelnogo syrya. 2019. N 4. P. 349–357. DOI:10.14258/jcprm.2019045521. (In Russian).

Gertsen M.M., Dmitrieva E.D. The influence of humic acids in the presence of oil-degrading microorganisms of the genus Rhodococcus on the sowing qualities of cockweed in oil pol-lution. Khimiya rastitelnogo syrya. 2020. N 2. P. 291–298. DOI:10.14258/jcprm.2020025552. (In Russian).

Shagidullin R.R., Latypova V. Z., Ivanov D. V., Petrov A.M., Shagidullina R.A., Tarasov O.Yu. Rationing of the permissible residual content of oil and its transformation products in soils. Georesources. 2011. N 5 (41). P. 2–5. (In Russian).

Опубликован
2022-03-31
Как цитировать
Dmitrieva, E., Grinevich, V., & Gertsen, M. (2022). ДЕГРАДАЦИЯ НЕФТИ И НЕФТЕПРОДУКТОВ БИОКОМПОЗИЦИЯМИ НА ОСНОВЕ ГУМИНОВЫХ КИСЛОТ ТОРФОВ И МИКРООРГАНИЗМОВ-НЕФТЕДЕСТРУКТОРОВ. Российский химический журнал, 66(1), 42-56. https://doi.org/10.6060/rcj.2022661.7
Раздел
Статьи