УДК: 537.228.1+541.67

ВЫСОКОТЕМПЕРАТУРНЫЕ ПЬЕЗОМАТЕРИАЛЫ НА ОСНОВЕ ЛЕГИРОВАННЫХ ФАЗ СИСТЕМЫ BiFeO3 - BaTiO3 (НИЗКОТЕМПЕРАТУРНЫЕ ТЕХНОЛОГИИ, ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА)

А.А. Нестеров¹, М.И. Толстунов¹, А.В. Лебедева², А.Ю. Малыхин², Л.А. Дыкина²

¹Южный федеральный университет, Химический факультет, ул. Зорге, 7, Ростов-на-Дону, Россия, 344058 E-mail: aanesterov@sfedu.ru, mtolstunov@sfedu.ru

²Институт высоких технологий и пьезотехники, Южный федеральный университет, ул. Мильчакова, 10, Ростов-на-Дону, Россия, 344090

E-mail: malyhin@sfedu.ru, arkazakova@sfedu.ru, ldykina@sfedu.ru

Контроль и управление технологическими и механическими системами при повышенных температурах может осуществляться за счёт использования пьезопреобразователей. Для этого необходимы пьезоматериалы, высокая пьезоактивность которых сохраняется при температурах выше 200 °С. Они, в частности, могут быть созданы на основе легированных фаз системы BiFeO3-BaTiO3. Однако, ряд недостатков таких материалов (высокие значения коэриитивных полей и большие диэлектрические потери) не позволяют осуществить их эффективную поляризацию. Часть этих недостатков связаны с нарушением состава сегнетофаз, вызванным их термической деструкцией, что обусловлено высокими температурами традиционных технологий синтеза порошков базовых фаз и спекания керамики. В связи с этим, нами разработаны низкотемпературные технологии синтеза ультрадисперсных порошков ряда легированных фаз системы BiFeO3 -ВаТіО₃, прилежащих к ее морфотропной области. Керамические пьезоматериалы, полученные с применением разработанных технологий, длительно сохраняют свою высокую пьезоактивность при температурах до 300 – 330 °С. В работе представлена низкотемпературная технология синтеза ультрадисперсных порошков (УДП) целевых фаз (T = 380 – 450 °C, время 30 – 40 мин), прекурсорами которой выступают пероксидные, пероксонитритные и нитратные соединения базовых элементов.

Использование УДП целевых фаз, позволяет изготавливать из них (при температурах 850 – 880 °C) качественную пьезокерамику, а также варьировать диаметр е е зерен в пределах от 1-2 до 10 - 12 µm. В работе приведены значения ЭФП изготовленных пьезоматериалов, а также степень их сохранения в рамках стационарных и переменных температурных режимов.

Ключевые слова: сегнетоэлектрики, высокотемпературная пьезокерамика, ультрадисперсные порошки, пьезоэлектричество, технологии

HIGH-TEMPERATURE PIEZO MATERIALS BASED ON THE BIFeO₃ - BatiO₃ DOPED PHASES (LOW-TEMPERATURE TECHNOLOGIES, ELECTROPHYSICAL PROPERTIES)

A.A. Nesterov¹, M.I. Tolstunov¹, A.V. Lebedeva², A.Yu. Malykhin², L.A. Dykina²

¹Faculty of Chemistry, Southern Federal University, 7 Zorge Str., Rostov-on-Don, Russia, 344058 E-mail: aanesterov@sfedu.ru, mtolstunov@sfedu.ru

²Institute of High Technologies and Piezotechnics, Southern Federal University, 10 Milchakova str., Rostov-on-Don, Russia, 344090

E-mail: malyhin@sfedu.ru, arkazakova@sfedu.ru, ldykina@sfedu.ru

Technological and mechanical systems management under the high temperatures can be carried out through the using piezoelectric transducers. This requires piezomaterials with high piezoactivity at temperatures above 200 °C. They can be created on the base of doped phases of the

BiFeO₃-BaTiO₃ system. However, several disadvantages (high values of coercive fields and large dielectric losses) do not allow effective polarization of these materials. Some of shortcomings are associated with a violation of the ferroelectric phase composition caused by their thermal destruction, which is due to the high temperatures of traditional solid state powders synthesis technologies and ceramic sintering. In this regard, we have developed low-temperature technologies for the ultrafine powders (UFP) synthesis with several doped phases of the $BiFeO_3$ - $BaTiO_3$ system adjacent to its morphotropic region. Ceramic piezomaterials obtained with technologies retain their high piezoactivity for a long time at temperatures up to 300 - 330 °C. The paper presents a low-temperature technology for the synthesis of target UFP (T = 380-450 °C, time 30-40 min), the precursors of which are basic elements peroxides, peroxonitrites and nitrate compounds.

The use of UFP target phases makes it possible to produce high-quality piezoc eramics from them (at temperatures of 850 - 880 °C), as well as to vary the diameter of its grains in the range from 1-2 to 10 - 12 µm. The paper presents the values of the electric and physical parameters of manufactured piezomaterials, as well as the degree of their preservation in the framework of stationary and variable temperature regimes.

Key words: ferroelectrics, high temperature piezoceramics, ultrafine powders, piezoelectricity, technologies

Для цитирования:

Нестеров А.А., Толстунов М.И., Лебедева А.В., Малыхин А.Ю., Дыкина Л.А. Высокотемпературные пьезоматериалы на основе легированных фаз системы BiFeO3 - BaTiO3 (низкотемпературные технологии, электрофизические свойства). Рос. хим. ж. (Ж. Рос. хим. об-ва). 2023. Т. LXVII. № 4. С. 80-84. DOI: 10.6060/RCJ.2023674.15. For citation:

Nesterov A.A., Tolstunov M.I., Lebedeva A.V., Malykhin A.Yu., Dykina L.A. High-temperature piezo materials based on the BiFeO₃ - BaTiO₃ doped phases (low-temperature technologies, electrophysical properties). Ros. Khim. Zh. 2023. V. 67. N 4. P. 80-84. DOI: 10.6060/RCJ.2023674.15.

ВВЕДЕНИЕ

Новые задачи, связанные с контролем и управлением системами в атомной, аэрокосмической, химической, автомобильной и других отраслях современной промышленности требуют создания пьезопреобразователей (ПП), способных эффективно функционировать при температурах > 200 °С. Основа таких ПП - керамические пьезоматериалы (КПМ) с температурой Кюри > 400 °С, которые, например, могут быть созданы на базе легированных фазы системы BiFeO₃-BaTiO₃. Недостатками КПМ этого типа, являются их высокие коэрцитивные поля (U_k) и диэлектрические потери tgδ, снижающие эффективность их поляризации [1-9]. Установлено, что рост tgб этих КПМ связан с нарушением их фазового состава, вызванного длительностью процессов высокотемпературного (≥ 600 °C) синтеза порошков их базовых фаз, а также спекания (≥ 900 °C) изготавливаемых прессзаготовок [1–16]. Причинами этого являются: а) низкая термическая стабильность фазы BiFeO₃ [17]; б) интенсивное испарение из системы Bi_2O_3 [18, 19]; в) частичное разложение (восстановление) Fe₂O₃ [20]. Эти проблемы стимулируют поиск новых технологических решений, позволяющих снизить температуру и время синтеза порошков базовых сегнетофаз, а также спекания прессзаготовок.

Целью данной работы являлось создание: а) новой низкотемпературной технологии синтеза ультрадисперсных порошков (УДП) ряда легированных фаз системы BiFeO₃ – BaTiO₃, состав которых находится вблизи ее морфотропной области, б) технологии изготовления, из УДП целевых фаз, КПМ с регулируемым зерновым составом и пористостью, имеющих значения Uk не более 50 кВ/см и tg δ – не более 3%.

ОСНОВНАЯ ЧАСТЬ

Проблемой низкотемпературного синтеза порошков фаз системы BiFeO₃ - BaTiO₃ являются прекурсоры. Это связано с тем, что растворимые в воде соединения Fe(III), Bi(III), Ti(IV) и легирующих элементов, образуют кристаллогидраты и гидролизуются, т.е. не являются «весовыми» формами. В связи с этим, нами, в качестве прекурсоров синтеза фаз этой системы, использовались: железо карбонильное (ОСЧ 13-2), висмут (ВиОО ОСЧ), Ba(NO₃)₂ (OCH), TiCl₄ (OCH 12-3), Mn(NO₃)₂ (XH) и 30% раствор H₂O₂.

На первом этапе синтеза, рассчитанные массы железа и висмута, помещались в реактор с 20% раствором HNO₃, нагретым до 45-50 °C, через который пропускался воздух (раствор 1). В другом реакторе, при 0 °С формировались водорастворимые соединения Ti(IV): к 20% раствору HNO₃, при перемешивании, по каплям, добавлялся TiCl₄. Полученный раствор нейтрализовался 2 М раствором NH₃ до рН 7,5 – 8. Образовавшийся гидроксид Ті(IV) отделялся от маточного раствора и промывался дистиллированной водой (центрифугирование, декантация и фильтрование). Гидроксид Ti(IV) растворяли (10% HNO₃ + 20% H₂O₂) (раствор 2). Массовая доля Ti(IV) в растворе $H_2[Ti(O_2)_2]$ - $_{x}(NO_{3})_{2+2x}$] (в пересчёте на TiO₂), определялась гравиметрическим методом. Растворы 1 и 2, в заданном соотношении, смешивались и в них вводился Mn(NO₃)₂ (раствор 3).

На втором этапе синтеза, в реактор с 3М раствором NH_3 , при перемешивании и принудительном охлаждении, со скоростью 2–3 мл/мин, вводился раствор 3. Это приводило к формированию гелеобразной фазы (продукт сополимеризации α -форм гидроксидов Bi(III), Fe(III) и Mn (II) с α -формами пероксогидроксидов Ti(IV)). Так как полученный гель содержал избыток раствора NH_3 , добавление к нему раствора Ba(NO_3)₂, в 20% H₂O₂, происходило образование пероксида бария, который сорбировался гелем.

Образовавшийся продукт помещали в сушильный шкаф для завершения гидролитических процессов и удаления жидкой фазы.

Полученный аморфный порошок компактировали и помещали в закрытую корундовую трубку, соединённую с водяным клапаном (выравнивание давления в процессе нагрева). В системе, за счёт разложения пероксонитратных промежуточных продуктов синтеза, поддерживалась окислительная атмосфера, которая не только препятствовала восстановлению ионов Fe³⁺, но и приводила к окислению ионов Mn²⁺ до ионов Mn⁴⁺, что необходимо для снижения значений tgd целевых КПМ [1-8, 11-16].

Фазовый состав продуктов синтеза и параметры элементарных ячеек, образующихся фаз, определялись методом рентгенофазового анализа (РФА) (дифрактометр ARL X'TRA) - Cu_{Ka1}), а объем и геометрия частиц порошков и зерен керамики - с помощью электронного микроскопа: JEOL JSM-6390LA. Контроль протекающих процессов проводился методом дифференциаль но-термического анализа (ДТА): дериватограф Diamond TG/DTA.

По данным ДТА, термическая деструкция аморфного порошка, приводящая к формированию фаз кристаллических УДП целевых фаз (рис. 1), завершается при 380 – 450 °C. Из них изготавливались пресс-заготовки (диски диаметром 12 мм), которые обжигались в трубчатой печи при температуре 850 – 880 °C в течение 1.8 – 2.1 ч.

Установлено, что рост скорости температуры в системе уменьшает объем зерен, формирующейся керамики, что связано с изменением (в единицу времени) числа центров первичной кристаллизации в системе.

Электрофизические параметры (ЭФП) пьезокерамики исследовались на образцах диаметром 10 мм и высотой 0,5 мм, на параллельные плоскости которых наносились серебряные электроды. Образцы поляризовались в силоксановой жидкости при температуре 100 °С в течение 30 – 40 мин, полем 30 – 45 кВ/мм, в соответствии с величинами коэрцитивных полей образцов. Коэрцитивные поля (U_k) пьезокерамики (при ее фиксированном составе) снижаются по мере роста среднего диаметра зерна в интервале от 1,5 – 2 до 5 – 6 µm, в среднем на 35 – 40%, а дальнейший рост среднего диаметра зерна, увеличивает их (U_k). По мере увеличения, в составе КПМ, мольной доли ВаТіО₃ значения их Uk снижаются (также как температуры Кюри (ТК) и рабочие температуры (T_P) (таблица)).

Рис. 1. УДП фазы состава Bi0.75Ba0.25Fe0.75Ti0.25O3 + 0.7 масс.% MnO2 (СЭМ) и данные ее РФА

Рис. 2. Микроструктура КПМ Ві0.75 Ва0.25 Fe0.75 Ті0.25 О3 +0.7 масс. % М пО2 (СЭМ): нагрев заготовок: 20 К/мин и 6 К/мин

Методом термического циклирования (10 циклов по 60 мин: нагревание до 350 °С – охлаждение), исследовался процесс деполяризации, изготовленных ПП. Согласно полученным данным, у ПП на основе фазы $Bi_{0,75}Ba_{0,25}Fe_{0,75}Ti_{0,22}O_3$, после 10 циклов (от 20 до 330 – 350 °С, длительностью 2 ч) значения d_{33} снижаются на 5 - 7%, а $\epsilon^{T}_{33}/\epsilon_{0}$ на 4 - 5%. Аналогичные изменения значений d_{33} и $\epsilon^{T}_{33}/\epsilon_{0}$ зафиксированы и при прогреве этих ПП при 300 °С в течение от 1 до 24 ч. Рост температуры системы до 430 – 450 °С снижаются значения d_{33} КПМ более чем на 70%.

Таблица

ЭФП КПМ (диаметр зёрен 4-5 µm) на основе фаз системы BiFeO₃ – BaTiO₃, легированных оксидом Mn (IV): 0.7 масс.%. (tgð образцов < 3%)

Состав фазы	d ₃₃ pC/N	T_K °C	T_P °C
Bi0,8Ba0,2Fe0,8Ti0,2O3	78	635	430
Bi0,78Ba0,22Fe0,78Ti0,22O3	86	621	390
Bi _{0,76} Ba _{0,24} Fe _{0,76} Ti _{0,24} O ₃	103	603	360
Bi0,75Ba0,25Fe0,75Ti0,22O3	122	585	340
Bi0,73Ba0,27Fe0,73Ti0,27O3	118	568	330
Bi0,71Ba0,29Fe0,71Ti0,29O3	113	542	310
Bi0,69Ba0,31Fe0,69Ti0,31O3	106	517	300
Bi0,67Ba0,33Fe0,67Ti0,33O3	99	490	290

выводы

Предложен низкотемпературный метод синтеза УДП сегнетофаз системы BiFeO₃ - BaTiO₃, позволяющий их синтезировать при 380 – 450 °C за 30 – 40 мин. КПМ, изготавливаемые из этих УДП (температура спекания 850 – 880 °C), характеризуются низкими значениями tgδ приемлемыми значениями ЭФП, которые сохраняются при температурах до 300 – 350 °C, что позволяет рекомендовать

данном температурном диапазоне. В рамках проведенного исследования опти-

мизированы составы КПМ, позволяющие формировать на их основе ПП, пьезоактивность которых длительно сохраняется при температурах до 300 – 330 °C (в рамках стационарных и переменных температурных режимов их эксплуатации).

их для контроля объектов, эксплуатирующихся в

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации: государственное задание в области научной деятельности, проект № FENW-2022-0033.

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

The authors declare the absence a conflict of interest warranting disclosure in this article.

ЛИТЕРАТУРА REFERENCES

- Akram F., Kim J., Khan S.A., Zeb A., Yeo H. G., Sung Y. S., Kwon Song T., Kim M.-H., Lee S. J. Alloys Compd. 2020. V. 818. 152878. DOI: 10.1016/j.jallcom.2019.152878.
- Calisir I., Hall D.A., Amirov A.A., Kleppe A.K. J. Mater. Chem. A. 2018. V. 6. N 13. P. 5378–5397. DOI: 10.1039/C7TA09497C.
- Zhang H., Jo W., Wang K., Webber K.G. Ceram. Int. 2014. V. 40. N 3. P. 4759–4765. DOI: 10.1016/j.ceramint.2013.09.020.
- Akram F., Malik R. A., Song T. K., Lee S., Kim M. H. J. Eur. Ceram. Soc. 2019, V. 366. P. 723–731. DOI: 10.1016/j.jeurceramsoc. 2019.02.038.
- Khan S.A., Ahmed T., Habib M., Akram F., Bae J., Song T.K., Lim D.H., Jeong S.-J., Kim M.-H., Lee S. J. Phys. Chem. Solids. 2021. V. 156. P. 110–133. DOI: 10.1016/j.jpcs.2021.110133.
- Zheng D., Zuo R., Zhang D., Li Y. J. Am. Ceram. Soc. 2015. V. 98. N 9. P. 2692–2695. DOI: 10.1111/jace.13737.
- Zhou C., Yang H., Zhou Q., Cen Z., Li W., C. Yuan, Wang H. Ceram. Int. 2013. V. 39. N 4. P. 4307–4311. DOI: 10.1016/j.ceramint. 2012.11.012.

- Akram F., Malik R. A., Hussain A., Song T. K., Kim W. J., Kim M. H. Mater. Lett. 2018. V. 217. P. 16–19. DOI: 0.1016/j.matlet.2018.01.031.
- Malik R. A., Zaman A., Hussain A., Maqbool A., Song T. K., Kim W. J., Sung Y.S., Kim M.H. J. Eur. Ceram. Soc. 2018. V. 38. N 4. P. 2259–2263. DOI: 10.1016/j.jeurceramsoc. 2017.11.049.
- Fu D., Ning Z., Hu D., Cheng J., Wang F., Chen, J. J. Mater. Sci. 2019. V. 54. P. 1153–1161. DOI: 101007/s10853-018-2926-8.
- 11. *Chen J.G, Cheng J.R* J Am Ceram Soc. 2016. V. 99. P. 536–542. DOI: 10.1111/jace.14003.
- Habib M., Akram F., Ahmad P., Al-Harbi F.F., Din I.U., Iqbal Q., Ahmed T., Khan S.A., Hussain A., Song T.-K., Kim M.-H., Lee S. Materials Letters. 2022. V. 315. 131950. DOI: 10.1016/j.matlet. 2022.131950.
- Khan S.A., Ahmed T., Bae J., Choi S.Y., Kim M., Malik R. A., Song T.-K., Kim M.-H., Lee S. Journal of the European Ceramic Society. 2022. V. 42. P. 4040–4044. DOI:10.1016/j.jeurceramsoc.2022.03.041.

- Ye Zuo-Guang. Handbook of advanced dielectric, piezoelectric and ferroelectric materials: Synthesis, properties and applications. Elsev., 2008. 484 p.
- Zhu L.F., Zhang B.P., Li S., Zhao G.L. J. Alloys Compd. 2017.
 V. 727. P. 382–389. DOI: 10.1016/j.jallcom. 2017.08.014.
- Wang T., Jin L., Tian Y., Shu L., Hu Q., Wei X. Mater. Lett. 2014. V. 137. P. 79–81. DOI: 10.1016/j.matlet.2014.08.133.
- Maitre A., Francois M., Gachon J.C. Journal of Phase Equilibria and Diffusion. V. 25. N 1. 2004. P. 59–67. DOI: 10.1007/s11669-004-0171-0.
- Казенас Е. К., Цветков Ю. В. Термодинамика испарения оксидов. М.: ЛКИ. 2008. 480. ISBN 978-5-382-01595-8 / Kazenas E. K., Cvetkov Yu. V. Termodinamika ispareniya oksidov. M.: LKI. 2008. 480.
- Разумовская О.Н., Кулешова Т.Б., Рудковская Л.М. Неорган. материалы. 1983. Т. 19. № 1. С. 113–115. Razumovskaya O.N., Kuleshova T.B., Rudkovskaya L.M. Neorgan. Materialy. 1983. V. 19. N 1. P. 113–115 (in Russian).
- Oniyama E., Wahlbeck P. G. J. Phys. Chem. B. 1998. V. 102. N 22. P. 4418–4425.

Поступила в редакцию 05.06.2023 Принята к опубликованию 11.11.2023

Received 05.06.2023 Accepted 11.11.2023