УДК: 544.25

ВЛИЯНИЕ (БИС)КАМФОРАЛИДЕН-ГЕКСАМЕТИЛЕНДИАМИНА НА МЕЗОМОРФНЫЕ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СМЕСИ ЦИАНОБИФЕНИЛОВ

В.В. Александрийский, А.А. Батракова, И.В. Новиков, В.А. Бурмистров, О.И. Койфман

Ивановский государственный химико-технологический университет (ФГБОУ ВО ИГХТУ), Кафедра химии и технологии высокомолекулярных соединений (ХиТВМС), Иваново, Шереметевский проспект, д. 7, 153000

E-mail: nmr@isuct.ru, a.ukhova@yandex.ru, burmistrov@isuct.ru, oik@isuct.ru

Исследованы мезоморфные, оптические и диэлектрические свойства нематической смеси 4-пентилокси- и 4-гептилокси-4'-цианобифенилов, допированной оптически активным (бис)камфоралиден-гексаметилендиамином. Методом поляризационной микроскопии измерены температуры просветления смесей. Проведена оценка степени дестабилизации мезофазы при введении допанта. Измерен шаг спирали индуцированной хиральной нематики в смесях. Изучено влияние хирального допанта на анизотропные характеристики мезофазы.

Ключевые слова: жидкие кристаллы, камфорпроизводные, термостабильность, хиральность, допанты, двулучепреломление, диэлектрические свойства

INFLUENCE OF (BIS)CAMPHORALIDENE-HEXAMETHYLENENDIAMINE ON MESOMORPHIC AND PHYSICO-CHEMICAL PROPERTIES OF THE MIXTURE OF CYANOBIPHENYLS

V.V. Aleksandriiskii, A.A. Batrakova, I.V. Novikov, V.A. Burmistrov, O.I. Koifman

Ivanovo State University of Chemistry and Technology, Department of Chemistry and Technology of Macromolecular Compounds, Ivanovo, Russia, 153000

E-mail: nmr@isuct.ru, a.ukhova@yandex.ru, burmistrov@isuct.ru, oik@isuct.ru E-mail: eldarmm@yahoo.com

> The mesomorphic, optical and dielectric properties of the nematic mixture of 4-pentyloxyand 4-heptyloxy-4'-cyanobiphenyls doped with optically active (bis)camphoralidene-hexamethylenediamine were studied. The clearance temperatures of the mixtures were measured using polarization microscopy. The destabilization degree of the mesophase upon the introduction of a dopant was assessed. The helical pitch of the induced chiral nematic in mixtures was measured. The influence of a chiral dopant on the anisotropic characteristics of the mesophase was studied.

Key words: liquid crystals, camphor derivatives, thermal stability, chirality, dopants, birefringence, dielectric properties

Для цитирования:

Александрийский В.В., Батракова А.А., Новиков И.В., Бурмистров В.А., Койфман О.И. Влияние (бис)камфоралиден-гексаметилендиамина на мезоморфные и физико-химические свойства смеси цианобифенилов. *Рос. хим. ж.* (Ж. Рос. хим. об-ва). 2023. Т. LXVII. № 3. С. 57–62. DOI: 10.6060/RCJ.2023673.8.

For citation:

Aleksandriiskii V.V., Batrakova A.A., Novikov I.V., Burmistrov V.A., Koifman O.I. Influence of (bis)camphoralidenehexamethylenendiamine on mesomorphic and physico-chemical properties of the mixture of cyanobiphenyls. *Ros. Khim. Zh.* 2023. V. 67. N 3. P. 57–62. DOI: 10.6060/RCJ.2023673.8.

ВВЕДЕНИЕ

Одним из перспективных современных направлений в химии жидких кристаллов является дизайн спиральных мезофаз путем инкорпорирования хиральных допантов в матрицу нематиков [1]. Этот процесс связан с индукцией молекулярной хиральности в жидкокристаллических фазах [2]. Актуальность такого подхода обусловлена необходимостью создания перспективных электрооптических устройств отображения информации, работающих со сверхмалыми управляющими напряжениями на твист-эффектах [3], хроматографических стационарных фаз с высокой хиральной селективностью [4], гибких магнитов [5], светочувствительных наноструктур [6] и других интеллектуальных ЖК материалов [7, 8]. Успешное решение этих задач невозможно без экспериментального исследования механизмов хиральной индукции третьего уровня оптически активный допант - нематический жидкий кристалл. В последнее десятилетие появилось большое число работ, посвященных решению этих проблем [9, 10]. Особый интерес среди хиральных допантов представляют производные камфоры. Так, в работах [11, 12] исследована хиральная индукции спиральных ЖК фаз под действием дикамфоразамещенного гемипорфиразина и его прекурсора – камфородицианопиразина. Показано, что образование макроцикла приводит к четырехкратному повышению эффективности (helical twisting power, HTP) по сравнению с его прекурсором, но при этом эффективность индукции остается небольшой (2 µm⁻¹ [11]).

В представляемой работе в качестве допанта для жидкокристаллических материалов был использован оптически активный (1R,4R) (бис)камфоралиден-гексаметилендиамин (C6-bisCamN+).

Отметим, что иминопроизводные камфоры широко используются как хиральные лиганды в асимметрическом синтезе и являются одним из важнейших классов азотсодержащих органических соединений, которые широко используются в области медицинской химии [13].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе в качестве мезоморфной матрицы использовали жидкокристаллическую смесь (CB-2) на основе производных цианобифенила: 55% 4пентилокси-4'-цианобифенила и 45% 4-гексилокси-4'-цианобифенила, проявляющую нематическую фазу в диапазоне 22 - 74.5 °C. Жидкокристаллические смеси на основе CB-2 с добавлением C6bisCamN готовили гравиметрически. В качестве хирального допанта использовали (1R,4R)(бис)камфоралиден-гексаметилендиамин (C6-bisCamN+), а также его рацемат (C6-bisCamN±).

(1R,4R)(бис)камфоралиденгексаметилендиамин (C6-bisCamN+) и рацемат (C6-bisCamN±) синтезированы аналогично работе [14].

Для C6-bisCamN+ с использованием поляриметра Polartronik V202 (Schmidt-Haensch, Германия) был измерен удельный угол оптического вращения, который составил $[\alpha]^{25}$ = -24,7°.

Дипольный момент допанта определяли методом Гугенгейма и Смита с использованием данных по диэлектрической проницаемости и показателя преломления растворов в четыреххлористом углероде (для C6-bisCamN+ μ =2,64 D, для C6bisCamN± μ =2,12 D).

Температуры фазовых переходов определяли методом термомикроскопии с использованием поляризационного микроскопа «Полам P211» с термостоликом и камерой, позволяющей фиксировать текстуры соединений и фазовые переходы в динамике. Дополнительно температуры фазовых переходов контролировали при проведении других экспериментов: измерении диэлектрических постоянных и двулучепреломления.

Измерение шага спирали исследуемых хиральных жидкокристаллических растворов проводили методом Гранжана-Кано [15].

Диэлектрическую проницаемость измеряли на частоте 10 КГц с использованием прибора LCR-817 (INSTEK) в плоскопараллельной ячейке с зазором между электродами 0,2 мм, помещённой в магнитное поле 0,2 Т. Измерения проводили при различных температурах параллельно (ε_{\parallel}) и перпендикулярно (ε_{\perp}) направлению магнитного поля. Погрешность определения ε не превышала $\pm 0,02$.

Двулучепреломление измеряли рефрактометрическим способом. С использованием термостатируемого рефрактометра Abbe непосредственно определяли показатели преломления обыкновенного луча $n_0 = n_{\perp}$ в мезоморфном состоянии и изотропно-жидкой фазе (n_{is}) на длине волны 589 нм. Индекс рефракции необыкновенного луча $n_e = n_{\parallel}$ рассчитывали из соотношения для среднего значения: $n^2 = 1/3(n_e^2 + 2n_o^2)$, определяемого путем экстраполяции n_{is} в область нематической фазы. Погрешность определения двулучепреломления не превышала 1,0%.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Методом поляризационной термомикроскопии были измерены температуры просветления смесей при различных концентрациях добавок. Анализ текстур мезофазы смесей, допированных C6bisCamN, показывает, что введение хирального допанта сопровождается образованием текстур «отпечатков пальцев» (Рис. 1 б,в), свидетельствующих об индуцировании хиральной нематической фазы N*. В то же время добавление рацемата (г) не приводит к образованию спиральной фазы, а текстура исходной нематической смеси CB-2 изменяется на «мраморную».

Рис. 1. Шлирен текстура нематической фазы CB-2 при 30 °C (а); образование текстуры «отпечатков пальцев» в смеси CB-2 + + 4,2% C6-bisCamN+ при 50 °C (б); текстура «отпечатков пальцев» смеси CB-2 с 3,5% C6-bisCamN+ при 50 °C (в); мраморная текстура нематической фазы смеси CB-2 с 3,0% C6-bisCamN± при 50 °C (г)

На рис. 2 представлен фрагмент фазовых диаграмм исследуемых смесей в области температур просветления. Добавление как оптически активного допанта, так и его рацемата приводит к уменьшению интервала мезофазы в основном за счет снижения температур просветления (переход мезофаза - изотропная жидкость). При этом наклон зависимости приведенной температуры просветления $T_{N^*I}\!/T^\circ{}_{NI}$ ($T^\circ{}_{NI}$ – температура нематико-изотропного перехода исходной смеси) от мольной доли допанта n₂ – β [11] является количественной характеристикой влияния немезоморфной добавки на жидкокристаллические свойства. Отметим практически равные величины β = -1.19 °/мол.доли. для С6-bisCamN+ и β = -1.22 °/мол.дол. для С6bisCamN±. Сильное дестабилизирующее воздействие допанта на мезофазу смеси СВ-2 связано с стерическими взаимодействиями объемных камфорных фрагментов и матрицей ЖК, и низкой геометрической анизотропией молекул данных допантов. Аналогичное воздействие оказывают на термостабильность СВ-2 другие камфорапроизводные [12, 16].

Одной из основных характеристик спиральных мезфаз является шаг спирали Р [1]. Для исследуемых хиральных жидкокристаллических смесей CB2 + C6-bisCamN+ методом Гражана-Кано был измерен шаг спирали при варьировании температуры и концентрации оптически активного допанта.

Рис. 2. Концентрационная зависимость относительной температуры просветления T_{NI}/T°_{NI} систем CB-2 + C6-bisCamN+ (-•-) CB2 + C6-bisCamN± (-•-)

Анализ данных рис.За показывает, что с ростом температуры шаг спирали для всех составов бинарной системы увеличивается, а ход зависимости 1/P=f(T) аналогичен температурным зависимостям параметра порядка нематических ЖК [17]. Таким образом снижение величин 1/р при повышении температуры обусловлены снижением ориентационной упорядоченности вследствие роста интенсивности теплового движения.

На основании данных по шагу спирали были рассчитаны величины энергии закручивания (helical twisting power) HTP [15]:

$$HTP = (P \cdot n_2 \cdot r)^{-1} \tag{1}$$

где Р шаг спирали, n₂ –мольная доля допанта, r - энантиомерная чистота допанта

Этот параметр зависит от структуры допанта и жидкого кристалла, а также природы межмолекулярных взаимодействий в системе [18].

Анализ данных показал, что энергия закручивания HTP в системе CB-2 + C6-bisCamN+ (рис.3б) при увеличении концентрации допанта и температуры снижается, приближаясь к нулевым значениям.

Следует отметить, что максимальные значения HTP для систем CB-2 + C6-bisCamN+ (HTP=22µm⁻¹) заметно превышают величины полученные ранее для оптически активного камфорзамещенного гемипорфиразина (+)HPA в смеси цианобифенилов CB-6 (HTP=2,19 μ m⁻¹ [5]), камфорзамещенного дицианопиразина R(+)CDCP (0,57 μ m⁻¹ [6]) и структурного гомолога бис(камфоролиден)этилендиамина в смеси CB-2 (3,3 μ m⁻¹ [18, 19]).

Причина роста эффективности хиральной индукции может быть связана с присутствием в структуре C6-bisCamN+ достаточно протяженного спейсера соединяющего два камфорных фрагмента. При этом величины дипольных моментов (для C6-bisCamN+ μ =2,64 D для C2-bisCamN+ μ =3,15 D [19]) и углов оптического вращения (-24,737 и -29,6° соответственно для гомологов C6 и C2) бис(камфоролиден)алкилдиаминов близки. Такие значения дипольных моментов могут быть обусловлены присутствием гош-конформера в составе алифатической цепи, как было показано для C2-bisCamN+[19].

Рис. 3. а) Температурная зависимость величин обратных шагу спирали в смесях CB-2 + C6-bisCamN+ (\bullet - 1,44%; \circ - 2,81%; \bullet - 4,24%; \Box - 3,55; \blacktriangle - 5,27; Δ - 6,83%; \bullet - 7,86%); б) концентрационная зависимость энергии закручивания при (\bullet - 25 °C; \Box - 50 °C)

Puc. 4. Зависимость анизотропии диэлектрической проницаемости Δε смесей (a) CB-2 + C6-bisCamN+ от приведённой температуры (• – CB-2; \circ – 1,44%; ■ – 2,55%; \Box – 2/80 %; ▲ – 5,27%; Δ – 6,89% допанта); (б) от концентрации допантов C6-bisCamN+ (незаполненные символы), CB2 + C6-bisCamN± (заполненные символы) при двух приведенных температурах • \circ – 35° ■ \Box – 5°

Одним из важных эксплуатационных параметров жидкокристаллических материалов является анизотропия диэлектрической проницаемости $\Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp}$ [5, 6], величина которой зависит от молекулярных (поляризуемость, дипольный момент) и надмолекулярных (ориентация диполей) параметров. В связи с этим нами были получены температурные зависимости компонент диэлектрической проницаемости ($\varepsilon_{\parallel} \varepsilon_{\perp}$) и рассчитаны значения $\Delta \varepsilon$ для систем на основе CB-2 при различных концентрациях оптически активного допанта и его рацемата.

Анализ температурных и концентрационных зависимостей $\Delta \varepsilon$ систем CB-2 + C6-bisCamN+ (рис. 4 а,б) показывает, что даже небольшое содержание в смеси оптически активного допанта (1,44%) вызывает резкое снижение диэлектрической анизотропии. При этом добавление рацемата (C6-bisCamN±) не приводит к столь кардинальному падению величины $\Delta \varepsilon$ (рис. 4б). Учитывая незначительную равную полярность обоих допантов и антипараллельную ассоциацию молекул алкилоксицианобифенилов [20], можно сделать вывод, что основной вклад в уменьшение $\Delta \varepsilon$ смеси CB-2 + C6-bisCamN+ вносит дополнительная компенсация дипольных моментов за счет сдвига директора в квазинематических слоях хиральной нематики.

Рис. 5. Зависимости двулучепреломления от концентрации допанта в смеси CB-2 + C6-bisCamN+ (●) CB2 + C6bisCamN± (○) при (T-T_{NI})=-25°

На рис. 5 представлены зависимости двулучепреломления смесей $\Delta n=n_l-n_{\perp}$ от концентрации допантов при одной и той же приведенной температуре (-25°). Оптическая анизотропия (Δn) опре-

ЛИТЕРАТУРА

1. *Kitzerow H-S, Bahr C.* Chirality in Liquid Crystals. New York (NY): Springer-Verlag Inc; 2001.

деляет электрооптический отклик и связана с ориентационной упорядоченностью мезоморфных материалов прямо пропорциональной зависимостью [20]. Можно отметить, что добавление как хирального, так и ахирального бис(камфоролиден)гексаметилендиамина приводит к небольшому снижению двулучепреломления исходной смеси CB-2. В то же время дальнейшее увеличение содержания C6-bisCamN+ не влияет на двулучепреломление, а ход зависимости от концентрации (рис. 5) имеет аналогичный характер с концентрационной зависимостью диэлектрической анизотропии (рис. 4б) и энергии скручивания (рис. 3б).

ЗАКЛЮЧЕНИЕ

Методом поляризационной микроскопии изучены мезоморфные свойства (текстуры и температуры просветления) в смеси 4-(п)алкокси-4'цианобифенилов (n = 5,7) (CB-2), допированной оптически активным (бис)камфоралиден-гексаметилендиамином и его ахиральным аналогом. Измерен шаг спирали индуцированной хиральной нематики, а также рассчитана энергия закручивания спирали в зависимости от температуры и состава смесей. Показана эффективность оптически активного (бис)камфоралиден-гексаметилендиамина как хирального индукутора по сравнению с другими камфорзамещенными соединениями, связанная с увеличением длины конформационно лабильного спейсера.

Образование хиральной нематики сопровождается сильным снижением диэлектрической анизотропии при введении оптически активного допанта по сравнению с ахиральным аналогом.

Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ на выполнение НИР. Тема № FZZW-2023-0009. Для проведения исследований использовано оборудование Центра коллективного пользования Ивановского государственного химико-технологического университета (ИГХТУ) при финансовой поддержке Министерства науки и высшего образования Российской Федерации (проект 075-15-2021-671).

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

The authors declare the absence a conflict of interest warranting disclosure in this article.

REFERENCES

1. *Kitzerow H-S, Bahr C.* Chirality in Liquid Crystals. New York (NY): Springer-Verlag Inc; 2001.

- Chilaya G. Rev. Phys. Appl. 1981. 16. 193–208. DOI: 10.1051/rphysap:01981001605019300.
- Kelly S.M., O'Neill M. Liquid Crystals for Electro-Optic Applications. Handbook of Advanced Electronic and Photonic Materials and Devices / Ed. by H.S. Nalwa. N.Y. etc.: Academic Press, 2000. 7. P. 1–66.
- Онучак Л.А., Арутюнов Ю. И., Кураева Ю.Г., Бурматнова Т.С., Бурмистров В.А., Кувшинова С.А., Литов К. М. Способ анализа структурных и оптических изомеров Патент РФ N 2528126. 10.09. 2014.
- Matt B., Pondman K.M., Asshoff S.J., ten Haken B., Fleury B., Katsonis N. Angew. Chem. Int. Ed. 2014. 53. P. 12446–12450. DOI: 10.1002/anie.201404312.
- Eelkema R. Liq. Cryst. 2011. 38. P. 1641–1652. DOI: 10.1080/ 02678292.2011.600779.
- Popov N., Honaker L.W., Popova M., Usol'tseva N., Mann E.K., Jákli A., Popov P. Materials. 2018. 11. 20. DOI: 10.3390/ma11010020.
- Yoshizawa A. Liq. Cryst. 2019. 46. P. 1950–1972. DOI: 10.1080/02678292.2019.1611966.
- Ferrarini A., Pieraccini S., Masiero S., Spada G.P. Beilstein J. of Org. Chem. 2009. 5 (50). P. 1–8. DOI: 10.3762/bjoc.5.50.
- Burmistrov V.A., Aleksandriiskii V.V., Novikov I.V., Koifman O.I. Жидк. крист. и их практич. использ. / Liq. Cryst. and their Appl. 2020. 20 (4). P. 6–26. DOI: 10.18083/LCAppl.2020.4.6.
- Burmistrov V.A., Novikov I.V., Aleksandriiskii V.V. J. Mol. Liq. 2019. V. 287. P.110961. DOI: 10.1016/j.molliq.2019 .110961.
- Burmistrov V.A., Novikov I.V., Aleksandriiskii V.V. J. Mol. Liq. 2017. 244. P. 398–404. DOI: 10.1016/j.molliq.2017. 08.124.
- Sokolova A.S., Yarovaya O.I., Shernyukov A.V., Pokrovsky M.A., Pokrovsky A.G., Lavrinenko V.A., Zarubaev V.V., Tretiak T.S., Anfimov P.M., Kiselev O.I., Bioorg. Med. Chem. 2013. 21. P. 6690–6698. DOI: 10.1016/j.bmc.2013.08.014.
- Sokolova A.S., Yarovaya O.I., Korchagina D.V., Zarubaev V.V., Tretiak T.S., Anfimov P.M., Kiselev O.I., Salakhutdinov N.F. Bioorganic & Medicinal Chemistry. 2014. 22. P. 2141–2148. DOI: 10.1016/j.bmc.2014.02.038.
- Pieraccini S., Ferrarini A., Spada G. P. Chirality. 2008. 20. P. 749–759. DOI: 10.1002/chir.20482.
- Батракова А.А., Новиков И.В., Александрийский В.В., Бурмистров В.А., Койфман О.И. Рос. хим. ж. (Ж. Рос.хим. об-ва). 2022. Т. LXVI. № 4. С. 33–41. DOI: 10.6060/rcj.2022664.5.
- Бурмистров В.А., Александрийский В.В., Койфман О.И. «Водородная связь в термотропных жидких кристаллах» - М.: КРАСАНД, 2013. - 352 с.
- Gottarelli G., Spada G.P. Induced Cholesteric Mesophases: Origin and Application, Mol. Cryst. Liq. Cryst. 1985. 123(1). P. 377–388. DOI: 10.1080/00268948508074792.
- Burmistrov V., Batrakova A., Aleksandriiskii V., Novikov I., Belov K., Khodov I., Koifman O. Molecules 2023. 28. 2388. DOI: 10.3390/molecules28052388.
- 20. *Dunmur D.A., Fukuda A., Luckhurst G.R.* Physical properties of liquid crystals: nematics. INSPEC, London, United Kingdom. 2001.

- Chilaya G. Rev. Phys. Appl. 1981. 16. 193–208. DOI: 10.1051/rphysap:01981001605019300.
- Kelly S.M., O'Neill M. Liquid Crystals for Electro-Optic Applications. Handbook of Advanced Electronic and Photonic Materials and Devices / Ed. by H.S. Nalwa. N.Y. etc.: Academic Press, 2000. 7. P. 1–66.
- Onuchak L.A., Arutunov J.I., Kuraeva J.G. et.al.; Method for analysis of structural and optical isomers Russian patent RU 2528126. 2014.
- Matt B., Pondman K.M., Asshoff S.J., ten Haken B., Fleury B., Katsonis N. Angew. Chem. Int. Ed. 2014. 53. P. 12446–12450. DOI: 10.1002/anie.201404312.
- Eelkema R. Liq. Cryst. 2011. 38. P. 1641–1652. DOI: 10.1080/ 02678292.2011.600779.
- Popov N., Honaker L.W., Popova M., Usol'tseva N., Mann E.K., Jákli A., Popov P. Materials. 2018. 11. 20. DOI: 10.3390/ ma11010020.
- 8. *Yoshizawa A.* Liq. Cryst. 2019. 46. P. 1950–1972. DOI: 10.1080/02678292.2019.1611966.
- Ferrarini A., Pieraccini S., Masiero S., Spada G.P. Beilstein J. of Org. Chem. 2009. 5 (50). P. 1–8. DOI: 10.3762/bjoc.5.50.
- Burmistrov V.A., Aleksandriiskii V.V., Novikov I.V., Koifman O.I. Жидк. крист. и их практич. использ. / Liq. Cryst. and their Appl. 2020. 20 (4). P. 6–26. DOI: 10.18083/LCAppl.2020.4.6.
- Burmistrov V.A., Novikov I.V., Aleksandriiskii V.V. J. Mol. Liq. 2019. V. 287. P.110961. DOI: 10.1016/j.molliq.2019.110961.
- Burmistrov V.A., Novikov I.V., Aleksandriiskii V.V. J. Mol. Liq. 2017. 244. P. 398–404. DOI: 10.1016/j.molliq.2017.08.124.
- Sokolova A.S., Yarovaya O.I., Shernyukov A.V., Pokrovsky M.A., Pokrovsky A.G., Lavrinenko V.A., Zarubaev V.V., Tretiak T.S., Anfimov P.M., Kiselev O.I., Bioorg. Med. Chem. 2013. 21. P. 6690–6698. DOI: 10.1016/j.bmc.2013.08.014.
- Sokolova A.S., Yarovaya O.I., Korchagina D.V., Zarubaev V.V., Tretiak T.S., Anfimov P.M., Kiselev O.I., Salakhutdinov N.F. Bioorganic & Medicinal Chemistry. 2014. 22. P. 2141–2148. DOI: 10.1016/j.bmc.2014.02.038.
- Pieraccini S., Ferrarini A., Spada G. P. Chirality. 2008. 20. P. 749–759. DOI: 10.1002/chir.20482.
- Batrakova A.A., Novikov I.V., Aleksandriiskii V.V., Burmistrov V.A., Koifman O.I. Ros. Khim. Zh. 2022. V. 66. N 4. P. 33–41. DOI:10.6060/rcj.2022664.5.
- Burmistrov V.A., Alexandrijskiy V.V., Koifman O.I. "Hydrogen bonding in thermotropic liquid crystals" M.:KRASAND, 2013. 352 p. (in Russia).
- Gottarelli G., Spada G.P. Induced Cholesteric Mesophases: Origin and Application, Mol. Cryst. Liq. Cryst. 1985. 123(1). P. 377–388. DOI: 10.1080/00268948508074792.
- Burmistrov V., Batrakova A., Aleksandriiskii V., Novikov I., Belov K., Khodov I., Koifman O. Molecules 2023. 28. 2388. DOI: 10.3390/molecules28052388.
- Dunmur D.A., Fukuda A., Luckhurst G.R. Physical properties of liquid crystals: nematics. INSPEC, London, United Kingdom. 2001.

Поступила в редакцию (Received) 14.08.2023 Принята к опубликованию (Accepted) 30.10.2023