УДК 541.1:620.193.01:669.14

DOI: 10.6060/rcj.2019632.10

ТЕРМОДИНАМИЧЕСКАЯ ОЦЕНКА КОРРОЗИОННО-ЭЛЕКТРОХИМИЧЕСКОГО ПОВЕДЕНИЯ СВИНЦОВОЙ ЛАТУНИ ЛС74-3

П.А. Николайчук, А.С. Колпакова, А.Г. Тюрин

ФГБОУ ВО «Челябинский государственный университет», кафедра аналитической и физической химии. 454001, г. Челябинск, ул. Братьев Кашириных, 129. E-mail: npa@csu.ru.

Рассчитаны термодинамические активности компонентов латуни ЛС74-3. Построены диаграммы потенциал – pH системы «латунь ЛС74-3 – H₂O» при 25 °C, общем давлении воздуха 1 бар и различных активностях ионов в растворе. Анализируются термодинамические особенности химической и электрохимической стойкости латуни ЛС74-3.

Ключевые слова: свинцовая латунь ЛС74-3, термодинамический анализ, фазовые равновесия, химическая устойчивость, коррозионно-электрохимическое поведение, диаграммы потенциал – pH.

THERMODYNAMIC EVALUATION OF THE CORROSION-ELECTROCHEMICAL BEHAVIOUR OF THE LEADED BRASS CuZn23Pb3

P.A. Nikolaychuk, A.S. Kolpakova, A.G. Tyurin

Federal State Budgetary Educational Institution of Higher Education "Chelyabinsk State University", Department of Analytical and Physical Chemistry. 454001, Chelyabinsk, Bratyev Kashirinykh street, 129. E-mail: npa@csu.ru.

The thermodynamic activities of the components of the brass CuZn23Pb3 were calculated. The potential – pH diagrams for the system "brass $CuZn23Pb3 - H_2O$ " at 25 °C, total air pressure of 1 bar and various activities of ions in solution were plotted. The thermodynamic features of the chemical and electrochemical stability of the brass CuZn23Pb3 were analysed.

Keywords: leaded brass CuZn23Pb3, thermodynamic assessment, phase equilibria, chemical stability, corrosionelectrochemical behaviour, potential – pH diagrams.

Введение

Свинцовые латуни хорошо обрабатываются резанием [1], поэтому они широко используются в промышленности для изготовления мелких деталей механизмов [2–10]. Они обладают хорошими антифрикционными свойствами и высокой механической прочностью [11]. Кроме того, свинцовые латуни обладают, по сравнению с простыми двухфазными латунями, повышенной коррозионной стойкостью в различных средах [12–26]. Поэтому задача термодинамического описания коррозионных свойств свинцовых латуней представляет интерес. В настоящей работе с помощью метода термодинамического анализа, предложенного в работе [27], описывается химическая и электрохимическая устойчивость свинцовой латуни ЛС74-3.

Фазовые равновесия в системе Cu-Zn-Pb

Усреднённый состав свинцовой латуни ЛС74-3 [1] представлен в табл. 1. Аналогов этого сплава в системах классификации UNS или ASTM нет [28, 29].

Система Cu–Zn характеризуется образованием ряда фаз с широкими областями гомогенности, в то время как в системах Cu–Pb и Zn–Pb наблюдается практически полная взаимная нерастворимость компонентов при низких температурах [30, 31]. Содержание меди и цинка в латуни таково, что они образуют твёрдый раствор с г. ц. к. решёткой (α-фазу). Несмотря на то, что свинец при низких температурах также имеет кристаллическую решётку г. ц. к., он практически не растворяется в медно-цинковой матрице и находится в латуни в виде отдельных включений [1, 29, 32].

Метод расчёта фазовых равновесий с использованием энергий Гиббса был предложен ван Лааром [33, 34] и впоследствии развит в работах других авторов [35–37]. Согласно ему, выражение для молярной энергии Гиббса [38, 39] α-фазы (G^α) может быть записано в виде [36, 37]:

$$\begin{aligned} \mathbf{G}^{\alpha} &= \mathbf{x}_{Cu} \cdot \mathbf{G}_{Cu}^{0,\alpha} + \mathbf{x}_{Zn} \cdot \mathbf{G}_{Zn}^{0,\alpha} + \mathbf{x}_{Pb} \cdot \mathbf{G}_{Pb}^{0,\alpha} + \\ &+ \mathbf{R} \cdot \mathbf{T} \cdot (\mathbf{x}_{Cu} \cdot \ln \mathbf{x}_{Cu} + \mathbf{x}_{Zn} \cdot \ln \mathbf{x}_{Zn} + \mathbf{x}_{Pb} \cdot \ln \mathbf{x}_{Pb}) + \mathbf{G}^{E,\alpha} \end{aligned}$$
(1),

где x_i – мольная доля [40] компонента i (i = Cu, Zn, Pb), $G_i^{0,\alpha}$ – энергия Гиббса 1 моля чистого вещества i с кристаллической решёткой г.ц.к. [41], G^E – молярная избыточная энергия Гиббса [42–44], T – абсолютная температура, K [45], R = 8,3144 Дж·моль⁻¹·K⁻¹ – универсальная газовая постоянная [46, 47].

Для описания α-фазы можно использовать модель раствора замещения [48–50], тогда выражение для избыточной энергии Гиббса приобретает следующий вид [36, 37]:

$$\begin{aligned} \mathbf{G}^{\mathrm{E},\alpha} &= \mathbf{x}_{\mathrm{Cu}} \cdot \mathbf{x}_{\mathrm{Zn}} \cdot \mathbf{L}_{\mathrm{Cu,Zn}} + \mathbf{x}_{\mathrm{Cu}} \cdot \mathbf{x}_{\mathrm{Pb}} \cdot \mathbf{L}_{\mathrm{Cu,Pb}} + \\ &+ \mathbf{x}_{\mathrm{Zn}} \cdot \mathbf{x}_{\mathrm{Pb}} \cdot \mathbf{L}_{\mathrm{Zn,Pb}} + \mathbf{x}_{\mathrm{Cu}} \cdot \mathbf{x}_{\mathrm{Zn}} \cdot \mathbf{x}_{\mathrm{Pb}} \cdot \mathbf{L}_{\mathrm{Cu,Zn,Pb}} \end{aligned}$$
(2),

при этом каждый из параметров $L_{Cu,Zn}$, $L_{Cu,Pb}$, $L_{Zn,Pb}$ и $L_{Cu,Zn,Pb}$ может являться функцией состава твёрдого раствора (x_i) и температуры (T) [51]. Термодинамические активности [52, 53] компонентов (a_i) вычисляются по формуле:

$$\mathbf{R} \cdot \mathbf{T} \cdot \ln a_i = \mathbf{R} \cdot \mathbf{T} \cdot \ln \mathbf{x}_i + \boldsymbol{\mu}_i^{\mathrm{E}}$$
(3),

где $\mu_i^{\rm E}$ – избыточный химический потенциал компонента *i* [42, 43]. Формулы связи избыточных химических потенциалов компонентов с избыточной энергией Гиббса приведены в работах [44, 51, 54–57].

Термодинамическое моделирование краевых двойных систем тройной системы Cu – Zn – Pb проводилось неоднократно. В литературе имеются различные данные о параметрах L_{ij} для систем Cu–Zn [58–63], Cu–Pb [64–69] и Zn–Pb [70–72]. Однако большинство этих данных не согласовано друг с другом. Моделирование тройной системы было произведено лишь дважды [73, 74]. При этом в работе [73] использован достаточно устаревший набор параметров L_{ij} для двойных систем

Таблица 1

Компонент	Массовая доля, %	Мольная доля ¹	Активность ¹	Мольная доля ²	Активность ²	Поверхностная активность
Cu	74	0,761	0,732	0,768	0,7294	0,0022
Zn	23	0,230	0,142	0,232	0,1743	0,9978
Pb	3	0,009	4895	_	1	_

Состав латуни ЛС74-3 и термодинамические активности её компонентов

¹ В предположении, что все компоненты образуют твёрдый раствор с решёткой г. ц. к.

² Медь и цинк образуют двухкомпонентный твёрдый раствор с решёткой г. ц. к., свинец выделяется в отдельную фазу.

[75] и не оценена величина параметра тройных взаимодействий $L_{Cu,Zn,Pb}$. В свою очередь, авторы работы [74] использовали модифицированные данные из [58, 65, 70], а также подобрали величину параметра $L_{Cu,Zn,Pb}$. Поэтому для составления аналитического выражения для избыточной энергии Гиббса α -фазы и расчёта термодинамических активностей её компонентов были использованы параметры из работы [74], значения которых приведены ниже:

 $L_{Cu,Pb} = 5,151 \cdot T + 45684, Дж \cdot моль^{-1}$ (5),

 $L_{Zn,Pb} = 32873, Дж·моль^{-1}$ (6),

$$L_{Cu,Zn,Pb} = 50\,000, \ Дж \cdot моль^{-1}$$
 (7).

Предполагая что свинец входит в состав α-фазы, были рассчитаны активности компонентов твёрдого раствора при 25 °С (стандартное состояние – чистый твёрдый компонент с решёткой г.ц.к.). Однако вычисленное значение активности свинца превышает единицу, что означает термодинамическую неустойчивость рассматриваемого тройного твёрдого раствора [76] и подтверждает то, что цинк выделяется в отдельную фазу. Таким образом, в состоянии термодинамического равновесия латунь ЛС74-3 представляет собой смесь двойного твёрдого раствора Cu-Zn и чистого свинца. Состав двухкомпонентного твёрдого раствора и активности меди и цинка были пересчитаны. Для обоих компонентов характерны незначительные отрицательные отклонения от идеальности.

Механизм окисления латуни, как в воздушных, так и в водных средах предполагает, что взаимодействие окислителя происходит не во всём объёме, а только на поверхности латуни. При этом активности компонентов в поверхностном твёрдом растворе будут отличаться от таковых в объёме фазы [77]. Уравнение связи поверхностных активностей компонентов (a_i^s) и активностей в объёме фазы (a_i) предложено Жуховицким [78] и Гуггенгеймом [79]. Для медно-цинкового твёрдого раствора это уравнение запишется в виде:

$$\frac{a_{\rm Cu}^{\rm s}}{a_{\rm Cu}} = \mathbf{B} \cdot \frac{a_{\rm Zn}^{\rm s}}{a_{\rm Zn}} \tag{8}$$

По данным справочника [80], для системы Си–Zn B = $5,2\cdot10^{-4}$. Расчёты показывают, что поверхностный слой латуни ЛС74-3 значительно обогащается цинком по сравнению с объёмом фазы.

Рассчитанные значения активностей компонентов в объёме латуни и на её поверхности приведены в таблице 1.

Химическая устойчивость

Для того, чтобы построить термодинамическую модель процессов окисления латуни, для начала необходимо рассмотреть равновесия отдельных её компонентов с кислородом.

В системе Cu–O образуется два стабильных оксида – Cu₂O и CuO [30, 31, 81–87]. Однако в сильнощелочных водных средах и сильноокислительных условиях медь также может образовывать соединение Cu₂O₃ [88–93]. Термодинамические свойства сексвиоксида меди оценены в работах [94, 95]. В литературе имеются данные о возможности образования и других оксидов меди, таких как Cu₃O₂ [96–100], Cu₄O₃ [101–107] и CuO₂ [108–113], однако какие-либо данные о термодинамических свойствах этих соединений при стандартных условиях отсутствуют, поэтому они не были включены в термодинамическую модель окисления латуни.

В системе Zn–O [30, 31, 114, 115] кроме оксида ZnO также может образовываться оксид ZnO₂ [114–119]. В литературе имеются данные о возможности образования и других оксидов цинка, таких как Zn₃O₅ [120–124] и Zn₂O₃ [125–128], однако они термодинамически неустойчивы при стандартных условиях [123, 124] и также не были включены в термодинамическую модель окисления латуни.

В системе Pb–O [30, 31, 129] при 25 °C and 1 bar устойчивы следующие оксиды: PbO, Pb₃O₄ [130– 135], Pb₁₂O₁₇[136–140], Pb₁₂O₁₉[136, 139–141] and PbO₂. The oxide Pb₂O₃ exists only at high pressures [139, 142]. The existence of the oxides Pb₂O, Pb₂O₅, Pb₄O₅, Pb₅O₈, Pb₇O₁₁ and Pb₈O₁₅ reported in the earlier studies [143–150] was not confirmed later.

Как показывают диаграммы состояния систем Cu–Zn–O [61], Cu–Pb–O [137, 151–154] и Zn–Pb–O [155], никаких смешанных оксидов меди, цинка и свинца не образуется.

Данные о стандартных энергиях Гиббса образования кислородсодержащих соединений компонентов латуни ЛС74-3 [156–210] обобщены в табл. 2.

Для термодинамической оценки склонности латуни к окислению в кислородсодержащих средах используется величина равновесного парциального давления кислорода [27, 211–215], которая однозначно связана с величиной энергии Гиббса соответствующей реакции окисления.

Стандартные энергии Гиббса образования соединений из элементов ($-\Delta_{f}G_{298}^{\circ}, \frac{A_{m}}{M_{MOR}}$)			
Соединение	- $\Delta_{\rm f} { m G}_{298}^{ m o}, {}^{{ m Д}_{ m ж}}\!$	Источник	
Cu ₂ O	147 848	[156, 165]	
2	150 548	[157, 170–173]	
	147 886	[158]	
	144 340	[159]	
	147 935	[160]	
	145 520	[161]	
	148 140	[162]	
	146 363	[163]	
	146 000	[184]	
	149 000	[186]	
	147 700	[185]	
CuO	127 890	[156]	
	129 365	[157, 166–169]	
	128 292	[158]	
	127 750	[159]	
	127 920	[160]	
	124 229	[161]	
	129 700	[184, 186]	
Cu ₂ O ₃	279 480	[94]	
CuO ₂	90 000	[164]	
ZnO	320 706	[156]	
	320 660	[157, 174–183]	
	318 150	[159]	
	320 525	[160]	
	318 300	[184, 185]	
	320 520	[186]	
ZnO ₂	75 000	[164]	
PbO	188 940	[187]	
	189 280	[158]	
	188 930	[184]	
	189 300	[185]	
	188 900	[186]	
	188 960	[160]	
	189 104	[157, 188–196]	
Pb ₃ O ₄	615 300	[187]	
	601 200	[186]	
	601 610	[158]	
	601 200	[184]	
	616 200	[185]	
	601 710	[160]	
	606 177	[157, 193, 197–201]	
Pb ₁₂ O ₁₇	2 508 630	[187]	
Pb ₁₂ O ₁₉	2 533 940	[187]	
PbO ₂	219 000	[185]	
	217 300	[186]	
	215 400	[158]	
	217 330	[184]	
	218 370	[160]	
	218 308	[157, 193, 199, 202–210]	

Таблица 2

Для реакции образования оксида из металла

$$x \operatorname{Me}(s) + y \operatorname{O}_{2}(g) \rightleftharpoons \operatorname{Me}_{x} \operatorname{O}_{\frac{y}{2}}(s)$$
 (9),

или окисления одного оксида до другого с большей степенью окисления металла

$$a \operatorname{Me}_{x}O_{z} + y O_{2}(g) \rightleftharpoons b \operatorname{Me}_{\frac{a \cdot x}{b}}O_{\frac{a \cdot z + \frac{y}{2}}{b}}(s)$$
 (10)

связь равновесного парциального давления кислорода с величиной энергии Гиббса реакции выражается уравнением

$$\ln P_{O_2} = \frac{\Delta_r G}{y \cdot \mathbf{R} \cdot \mathbf{T}} \tag{11},$$

где *у* – стехиометрический коэффициент перед кислородом в уравнении реакции.

Основываясь на результатах расчётов, составлена термодинамическая картина окисления латуни ЛС74-3 в кислородсодержащих средах. Все равновесия, реализуемые в процессе окисления, обобщены в табл. 3. Следует учитывать, что, если не указано иначе, участники всех равновесий принимаются чистыми веществами, и их активности приравниваются к единице.

Давление кислорода в атмосферном воздухе при нормальных условиях составляет ~0,21 бар [216], и все равновесия, для которых необходимо большее значение P_{O_2} , не реализуются на воздухе. Следовательно, окисление латуни ЛС74-3 на воздухе завершится образованием ZnO, PbO₂ и Cu₂O₃. Однако, оксид меди (III) не образует отдельную

Таблица 3 Равновесия, реализуемые при окислении латуни ЛС74-3 в кислородсодержащих средах при 25 °С

Уравнение реакции	р _{0,} , бар
$2Zn(\alpha) + O_2 = 2ZnO; a_{Zn(\alpha)} = 0,9978$	2,61.10-112
$2Pb(\beta) + O_2 = 2PbO; a_{Pb(\beta)} = 1$	5,84.10-67
$4Cu(\alpha) + O_2 = 2Cu_2O; a_{Cu(\alpha)} = 0,0022$	7,09.10-42
$2Cu_2O + O_2 = 4CuO$	$6,95 \cdot 10^{-40}$
$6PbO + O_2 = 2Pb_3O_4$	1,01.10-17
$8Pb_{3}O_{4} + O_{2} = 2Pb_{12}O_{17}$	2,36.10-17
$Pb_{12}O_{17} + O_2 = Pb_{12}O_{19}$	1,10.10-8
$4\mathrm{CuO} + \mathrm{O}_2 = 2\mathrm{Cu}_2\mathrm{O}_3$	9,13·10 ⁻⁸
$2Pb_{12}O_{19} + 5O_2 = 24PbO_2$	6,52·10 ⁻⁶
$2ZnO + O_2 = 2ZnO_2$	1,96.1085

фазу [217], поэтому оксидная плёнка на латуни будет состоять из CuO, ZnO и PbO₂.

Электрохимическая устойчивость

Для построения термодинамической модели окисления латуни ЛК80-3 в водных средах удобно использовать диаграммы электрохимического равновесия (потенциал–рН) [213–215, 218–232], которые наиболее наглядно отображают возможные химические и электрохимические равновесия в системе. Методика построения и анализа для многокомпонентных сплавов подобных диаграмм подробно изложена в работах [27, 213–215, 219–223, 225, 228–238].

Ранее были построены диаграммы потенциал – pH систем Cu– H_2O [238–255], Zn– H_2O [256– 263] и Pb– H_2O [138, 264]. Также диаграммы Пурбе для меди, цинка и свинца можно найти в сборниках [185, 219, 265–269] и базах данных [270–284]. Согласно им, в системе $Cu-H_2O$ при различных условиях термодинамически устойчивы ионы Cu^{2+} , $HCuO_2^-$ и CuO_2^{2-} , в системе $Zn-H_2O$ -ионы Zn^{2+} , $HZnO_2^-$ и ZnO_2^{2-} , в системе $Pb-H_2O$ -ионы Pb^{2+} , $HPbO_2^-$, Pb^{4+} и PbO_3^{2-} .

Для расчёта равновесных потенциалов полуреакций использованы термодинамические данные из табл. 2, а также (для равновесий с участием ионов) данные справочников [186, 278, 285–290].

На основании диаграмм потенциал–рН для чистых металлов построена диаграмма потенциал–рН системы «свинцовая латунь ЛС74-3– H_2O » при 25 °C, давлении 1 бар и активностях ионов в растворе, равных 1 моль/л (рис. 1), 10⁻² моль/л (рис. 2), 10⁻⁴ моль/л (рис. 3) и 10⁻⁶ моль/л (рис. 4). Основные химические и электрохимические равновесия в системе сведены в таблицу 4.

Линии *а* и *b* на диаграммах (на рис. 1–4 показаны штрих-пунктиром) соответствуют работе водородного и кислородного электродов, соответствен-

Рис. 1. Диаграмма потенциал–рН системы «латунь ЛС74-3–H₂O» при 25 °C, давлении 1 бар и *a_i* = 1 моль/л (негидратированная форма оксидов)

Рис. 2. Диаграмма потенциал-рН системы «латунь ЛС74-3-Н,О» при 25 °С, давлении 1 бар и *a*_i = 10⁻² моль/л (негидратированная форма оксидов)

Х

но. Область, лежащая между ними, соответствует электрохимической устойчивости воды и представляет наибольший интерес для изучения коррозионно-электрохимического поведения латуни.

На диаграмме потенциал-рН системы латунь «ЛС74-3-Н₂О» можно выделить 62 области преобладания различных фаз:

I – латунь ЛС74-3; XI II – α-φаза (Cu) + β-φаза (Pb) + ZnO; XI III – α - ϕ asa(Cu) + β - ϕ asa(Pb) + Zn²⁺; XI IV – α - ϕ asa(Cu) + PbO + ZnO; XV $V - \alpha - \phi a a (Cu) + PbO + Zn^{2+};$ XV VI – α - ϕ asa(Cu) + Pb²⁺, Zn²⁺; XV $VII - Cu_2O + PbO + ZnO;$ XV

$$IX - Cu_{2}O + Pb^{2+}, Zn^{2+};$$

$$X - CuO + PbO + ZnO;$$

$$XI - CuO + PbO + Zn^{2+};$$

$$XII - CuO + Pb^{2+}, Zn^{2+};$$

$$XIII - Cu^{2+}, Pb^{2+}, Zn^{2+};$$

$$XIV - CuO + Pb_{3}O_{4} + ZnO;$$

$$XV - CuO + Pb_{3}O_{4} + Zn^{2+};$$

$$XVI - CuO + Pb_{12}O_{17} + ZnO;$$

$$XVII - CuO + Pb_{12}O_{17} + Zn^{2+};$$

$$XVIII - CuO + Pb_{12}O_{19} + ZnO;$$

VIII – $Cu_2O + PbO + Zn^{2+}$;

Рис. 3. Диаграмма потенциал–рН системы «латунь ЛС74-3–H₂O» при 25 °C, давлении 1 бар и *a_i* = 10⁻⁴ моль/л (негидратированная форма оксидов)

$XIX - CuO + Pb_{12}O_{19} + Zn^{2+};$	$XXX - Cu_2O + HPbO_2^-, \ ZnO_2^{2-};$
$XX - Cu_2O_3 + Pb_{12}O_{19} + ZnO;$	$XXXI - Cu_2O + ZnO + HPbO_2^-;$
XXI - $Cu_2O_3 + Pb_{12}O_{19} + Zn^{2+}$;	$XXXII - CuO + HPbO_2^-, \ ZnO_2^{2-};$
XXII – $Cu_2O_3 + Pb^{2+}$, Zn^{2+} ;	XXXIII – CuO + ZnO + HPbO $_{2}^{-}$;
$XXIII - Cu_2O_3 + PbO_2 + ZnO;$	$XXXIV - CuO + Pb_{3}O_{4} + ZnO_{2}^{2-};$
$XXIV - Cu_2O_3 + PbO_2 + Zn^{2+};$	$XXXV - CuO + Pb_{12}O_{17} + ZnO_2^{2-};$
$XXV - PbO_2 + Cu^{2+}, Zn^{2+};$	XXXVI - CuO + $Pb_{12}O_{19} + ZnO_2^{2-}$;
$XXVI - Cu_2O_3 + PbO_2 + ZnO_2;$	XXXVII - $Cu_2O_3 + Pb_{12}O_{19} + ZnO_2^{2-};$
XXVII – α - ϕ asa(Cu) + β - ϕ asa(Pb) + ZnO ₂ ²⁻ ;	$XXXVIII - Cu_2O_3 + PbO_2 + ZnO_2^{2-};$
XXVIII – α - ϕ a3a(Cu) + HPbO ₂ ⁻ , ZnO ₂ ²⁻ ;	$XXXIX - Cu^{2+}, Pb^{4+}, Zn^{2+};$
XXIX – α - ϕ asa(Cu) + ZnO + HPbO ₂ ⁻ ;	$XXXX - Cu_2O_3 + Pb^{4+}, Zn^{2+};$

Рис. 4. Диаграмма потенциал–рН системы «латунь ЛС74-3–H₂O» при 25 °C, давлении 1 бар и *a*_i = 10⁻⁶ моль/л (негидратированная форма оксидов)

XXXXI – α -фаза (Cu) + β -фаза (Pb) + HZnO ₂ ⁻ ;	LII $-\alpha$ - ϕ asa $(Cu) + Zn^{2+}$, HPbO ₂ ⁻ ;
XXXXII – α - ϕ asa(Cu) + HPbO ₂ ⁻ , HZnO ₂ ⁻ ;	$LIII - Cu_2O + Zn^{2+}, HPbO_2^-;$
XXXXIII – $Cu_2O + HPbO_2^-$, $HZnO_2^-$;	$LIV - CuO + Zn^{2+}, HPbO_2^-;$
$XXXXIV - CuO + HPbO_2^-, HZnO_2^-;$	$LV-CuO_{2}^{2^{-}},\ ZnO_{2}^{2^{-}},\ HPbO_{2}^{-};$
$XXXXV - CuO + Pb_{3}O_{4} + HZnO_{2}^{-};$	$LVI-HCuO_2^-,\ ZnO_2^{2-},\ HPbO_2^-;$
$XXXXVI - CuO + Pb_{12}O_{17} + HZnO_2^-;$	$LVII - HCuO_{2}^{-}, HZnO_{2}^{-}, HPbO_{2}^{-};$
$XXXXVII - CuO + Pb_{12}O_{19} + HZnO_2^-;$	LVIII – $Pb_{12}O_{19} + CuO_2^{2-}$, ZnO_2^{2-} ;
$XXXXVIII - Cu_2O_3 + Pb_{12}O_{19} + HZnO_2^-;$	${\rm LIX}-CuO_2^{2-},\ ZnO_2^{2-},\ PbO_3^{2-};$
$XXXXIX - Cu_2O_3 + PbO_3^{2-}, ZnO_2^{2-};$	$LX - Pb_{12}O_{19} + HCuO_2^-, ZnO_2^{2-};$
$L - Cu_2O_3 + PbO_2 + HZnO_2^-;$	$\mathrm{LXI}-\mathrm{Pb}_{12}\mathrm{O}_{19}+\mathrm{HCuO}_{2}^{-},\mathrm{HZnO}_{2}^{-};$
$LI - Cu_2O_3 + ZnO_2 + PbO_3^{2-};$	$LXII - Cu_2O_3 + PbO_3^{2-}, HZnO_2^{-}.$

Таблица 4

№ линии	Электродная реакция	Равновесный потенциал (В) или pH раствора
1	2	3
а	$2H^+ + 2e^- \rightleftharpoons H_2, P_{H_2} = 5 \cdot 10^{-7} \text{ fap}$	0,186 – 0,0591 · pH
b	$O_2 + 4H^+ + 4e^- \rightleftharpoons 2H_2O, P_{O_2} = 0,21$ бар	1,229 – 0,0591 · pH
1	$ZnO + 2H^+ + 2e^- \rightleftharpoons Zn(\alpha) + H_2O; a_{Zn(\alpha)} = 0,174$	-0,372 - 0,0591 · pH
2	$\operatorname{Zn}^{2^+} + 2e^- \rightleftharpoons \operatorname{Zn}(\alpha); a_{\operatorname{Zn}(\alpha)} = 0,174$	$-0.753 + 0.0295 \cdot \lg a_{Zn^{2+}}$
3	$Zn^{2+} + H_2O \rightleftharpoons ZnO + 2H^+$	pH = 6,446 - 0,5 · lg $a_{Zn^{2+}}$
4	$PbO + 2H^{+} + 2e^{-} \rightleftharpoons Pb(\beta) + H_2O; a_{Pb(\beta)} = 1$	0,249 – 0,0591 · pH
5	$Pb^{2^+} + 2e^- \rightleftharpoons Pb(\beta); a_{Pb(\beta)} = 1$	$-0,126 + 0,0295 \cdot \lg a_{\mathtt{Pb}^{2+}}$
6	$Pb^{2+} + H_2O \Longrightarrow PbO + 2H^+$	pH = 6,346 - 0,5 · lg $a_{pb^{2+}}$
7	$\operatorname{Cu}_2\operatorname{O} + 2\operatorname{H}^+ + 2\operatorname{e}^- \rightleftharpoons 2\operatorname{Cu}(\alpha) + \operatorname{H}_2\operatorname{O}; a_{\operatorname{Cu}(\alpha)} = 0,729$	0,443 – 0,0591 · pH
8	$2CuO + 2H^+ + 2e^- \rightleftharpoons Cu_2O + H_2O$	0,658 – 0,0591 · pH
9	$Pb_{3}O_{4} + 2H^{+} + 2e^{-} \rightleftharpoons 3PbO + H_{2}O$	0,804 – 0,0591 · pH
10	$Pb_{12}O_{17} + 2H^+ + 2e^- \rightleftharpoons 4Pb_3O_4 + H_2O$	0,977 – 0,0591 · pH
11	$Pb_{12}O_{19} + 4H^+ + 4e^- \rightleftharpoons Pb_{12}O_{17} + 2H_2O$	$1,082 - 0,0591 \cdot pH$
12	$\operatorname{Cu}^{2^+} + 2e^- \Longrightarrow \operatorname{Cu}(\alpha); a_{\operatorname{Cu}(\alpha)} = 0,729$	$0,341 + 0,0295 \cdot \lg a_{Cu^{2+}}$
13	$2Cu^{2^+} + H_2O + 2e^- \rightleftharpoons Cu_2O + 2H^+$	$0,235 - 0,0591 \cdot \text{ pH} + 0,0591 \cdot \text{ lg } a_{\text{Cu}^{2+}}$
14	$2Cu_2O_3 + 2H^+ + 2e^- \rightleftharpoons 2CuO + H_2O$	1,143 – 0,0591 · pH
15	$Pb_{3}O_{4} + 8H^{+} + 2e^{-} \rightleftharpoons 3Pb^{2+} + 4H_{2}O$	$1,929 - 0,2364 \cdot \text{pH} - 0,0886 \cdot \text{lg } a_{\text{Pb}^{2+}}$
16	$Cu^{2+} + H_2O \rightleftharpoons CuO + 2H^+$	pH = 3,58 - 0,5 · lg $a_{Cu^{2+}}$
17	$12PbO_2 + 10H^+ + 10e^- \rightleftharpoons Pb_{12}O_{19} + 5H_2O$	1,324 – 0,0591 · pH
18	$Pb_{12}O_{17} + 34H^+ + 10e^- \rightleftharpoons 12Pb^{2+} + 17H_2O$	$1,739 - 0,2009 \cdot \text{ pH} - 0,0709 \cdot \text{ lg } a_{\text{pb}^{2+}}$
19	$Pb_{12}O_{19} + 38H^+ + 14e^- \rightleftharpoons 12Pb^{2+} + 19H_2O$	$1,551 - 0,1604 \cdot \text{ pH} - 0,0507 \cdot \text{ lg } a_{\text{Pb}^{2+}}$
20	$Cu_2O_3 + 6H^+ + 2e^- \rightleftharpoons 2Cu^{2+} + 3H_2O$	$1,566 - 0,1773 \cdot \text{pH} - 0,0591 \cdot \log a_{\text{Cu}^{2+}}$
21	$PbO_2 + 4H^+ + 2e^- \rightleftharpoons Pb^{2+} + 2H_2O$	$1,457 - 0,1182 \cdot \text{ pH} - 0,0295 \cdot \text{ lg } a_{\text{Pb}^{2+}}$
22	$ZnO_2 + 2H^+ + 2e^- \rightleftharpoons ZnO + H_2O$	2,502 – 0,0591 · pH
23	$ZnO_2 + 4H^+ + 2e^- \rightleftharpoons Zn^{2+} + H_2O$	$2,833 - 0,1182 \cdot \text{pH} - 0,0295 \cdot \text{lg } a_{\text{Zn}^{2+}}$
24	$\mathrm{HPbO}_{2}^{-} + 3\mathrm{H}^{+} + 2\mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}(\beta) + 2\mathrm{H}_{2}\mathrm{O}; a_{\mathrm{Pb}(\beta)} = 1$	$0,703 - 0,0866 \cdot \text{ pH} + 0,0295 \cdot \text{ lg } a_{\text{HPbO}_2^-}$
25	$PbO + H_2O \rightleftharpoons HPbO_2^- + H^+$	$pH = 15,366 + lg a_{HPbO_2}$

Основные химические и электрохимические равновесия в системе «латунь ЛС74-3 при H₂O» (рис. 1–4) при 25 °C и общем давлении 1 бар

Продолжение таблицы 4.

1	2	3
26	$Pb_{3}O_{4} + 2H_{2}O + 2e^{-} \rightleftharpoons 3HPbO_{2}^{-} + H^{+}$	$-0,557 + 0,0295 \cdot \text{ pH} - 0,0886 \cdot \text{ lg } a_{\text{HPbO}_2^-}$
27	$ZnO_2^{2-} + 2H^+ \rightleftharpoons ZnO + H_2O$	pH = 14,77 + 0,5 · lg $a_{\text{ZnO}_2^{2-}}$
28	$ZnO_2 + 2e^- \rightleftharpoons ZnO_2^{2-}$	$1,629 - 0,0295 \cdot \lg a_{ZnO_2^{2-}}$
29	$Pb^{4+} + 2e^{-} \rightleftharpoons Pb^{2+}$	$1,726 + 0,0295 \cdot \lg \frac{a_{{\rm Pb}^{4+}}}{a_{{\rm Pb}^{2+}}}$
30	$Pb^{4+} + 2H_2O \Longrightarrow PbO_2 + 4H^+$	$-2,279 - 0,25 \cdot \lg a_{pb^{4+}}$
31	$ZnO_2^{2-} + H^+ \rightleftharpoons HZnO_2^-$	pH = 13,09 + lg $\frac{a_{\text{ZnO}_{2}^{-}}}{a_{\text{HZnO}_{2}^{-}}}$
32	$Pb_{12}O_{17} + 7H_2O + 10e^- \rightleftharpoons 12HPbO_2^- + 2H^+$	$-0,250 + 0,0118 \cdot \text{ pH} - 0,0709 \cdot \log a_{\text{HPbO}_2^-}$
33	$12PbO_3^{2-} + 34H^+ + 10e^- \rightleftharpoons Pb_{12}O_{19} + 17H_2O$	$3,545 - 0,2009 \cdot \text{ pH} + 0,0709 \cdot \text{ lg } a_{\text{PbO}_3^{2^-}}$
34	$HZnO_{2}^{-} + H^{+} \rightleftharpoons ZnO + H_{2}O$	$pH = 16,44 + lg a_{HZnO_2^-}$
35	$ZnO_2 + H^+ + 2e^- \rightleftharpoons HZnO_2^-$	2,016 – 0,0295 · pH – 0,0295 · lg $a_{_{\rm HZnO_2^-}}$
36	$PbO_2 + H_2O \Longrightarrow PbO_3^{2-} + 2H^+$	pH = 15,658 + 0,5 · lg $a_{\text{PbO}_3^2}$
37	$Pb^{2+} + 2H_2O \implies HPbO_2^- + 3H^+$	pH = 9,345 + lg $\frac{a_{\rm Pb^{2+}}}{a_{\rm HPbO_2^-}}$
38	$2CuO_2^{2-} + 6H^+ + 2e^- \rightleftharpoons Cu_2O + 3H_2O$	2,549 - 0,1773 · pH + 0,0591 · lg $a_{CuO_2^{2-}}$
39	$2HCuO_2^- + 4H^+ + 2e^- \rightleftharpoons Cu_2O + 3H_2O$	$1,771 - 0,1182 \cdot \text{ pH} - 0,0591 \cdot \text{ lg } a_{\text{HCuO}_2^-}$
40	$CuO_2^{2-} + H^+ \Longrightarrow HCuO_2^-$	$pH = 13,16 + lg \frac{a_{CuO_{2}^{-}}}{a_{HCuO_{2}^{-}}}$
41	$HCuO_2^- + H^+ \rightleftharpoons CuO + H_2O$	$pH = 18,83 + lg a_{HCuO_2^-}$
42	$Pb_{12}O_{19} + 5H_2O + 14e^- + 2H^+ \rightleftharpoons 12HPbO_2^-$	$0,130 - 0,0084 \cdot \text{ pH} - 0,0507 \cdot \text{ lg } a_{\text{HPbO}_2^-}$
43	$HPbO_{2}^{-} + H_{2}O \rightleftharpoons PbO_{3}^{2-} + 3H^{+} + 2e^{-}$	$1,547 - 0,0886 \cdot \text{ pH} + 0,0295 \cdot \log \frac{a_{\text{PbO}_3^{}}}{a_{\text{HPbO}_2^{}}}$
44	$Cu_2O_3 + H_2O + 2e^- \rightleftharpoons 2HCuO_2^-$	$0,030 - 0,0591 \cdot \lg a_{_{\mathrm{HCuO}_2^-}}$
45	$Cu_2O_3 + H_2O + 2e^- \rightleftharpoons 2CuO_2^{2-} + 2H^+$	$-0,748 + 0,0591 \cdot \text{ pH} - 0,0591 \cdot \text{ lg } a_{\text{CuO}_2^{2^-}}$

В зависимости от активности ионов в растворе соответствующие границы меняют свои положения вплоть до изменения состава областей (IV, XXIX, XXXX и др.). Латунь данного состава имеет область иммунности (термодинамической устойчивости) I, которая сужается с уменьшением активностей компонентов в растворе. С повышением потенциала в первую очередь корродирует цинк. Линия 3 разделяет области активного растворения цинка (III,VI, IX, XII, XIII и др.) и его оксидной пассивации с образованием ZnO (II, IV, VII). При уменьшении активности ионов цинка в воде область устойчивости ZnO, расположенная между линиями 1, 3, 22, 34, резко сужается и сдвигается в щелочную область, расширяя границы областей активного растворения металла. Уменьшение активности так же способствует растворению цинка в щелочной среде с образованием анионов $HZnO_2^-$ и ZnO_2^{2-} .

Вслед за цинком анодной поляризации подвергается свинец. При оксидной пассивации сплава он может образовывать различные устойчивые оксиды: PbO, Pb₃O₄, Pb₁₂O₁₇, Pb₁₂O₁₉, PbO₂. Аналогично цинку, с уменьшением активности ионов свинца в воде область устойчивости PbO уменьшается и при $a_i = 10^{-6}$ моль/л совсем вытесняется областью активного растворения свинца с образованием ионов Pb²⁺ и HPbO₂⁻.

Медь начинает окисляться выше линий 7 и 12. Она растворяется, образуя ионы Cu^{2+} в кислой области, $HCuO_2^-$ и CuO_2^{2-} – в щелочной, либо окисляется до Cu₂O, CuO, Cu₂O₃.

Область XIII – область общей коррозии сплава. С уменьшением активностей ионов в растворе ее границы расширяются.

Выводы

1. Рассчитаны термодинамические активности компонентов твёрдого раствора Cu–Zn–Pb при 25 °C и активности меди и цинка в поверхностном слое свинцовой латуни ЛС74-3. Показано, что свинец выделяется из раствора в отдельную фазу.

2. Рассчитаны равновесные давления кислорода в реакциях окисления компонентов латуни ЛС74-3 при 25 °С. Показано, что окисление латуни на воздухе будет завершаться образованием оксидов CuO, ZnO и PbO₂.

3. Построены диаграммы потенциал–рН системы «латунь ЛС74-3–H₂O» при 25 °С, давлении воздуха 1 бар и различных активностях ионов в растворе. Установлены области различного коррозионно-электрохимического поведения латуни в водных средах. Пассивационная плёнка на латунях в водных средах будет состоять преимущественно из оксидов CuO и ZnO.

Литература

- 1. *Смирягин А.П., Смирягина Н.А., Белова А.В.* Промышленные цветные металлы и сплавы. М.: Металлургия. 1974. 488 с.
- 2. *Pantazopoulos G.* Journal of Materials Engineering and Performance. 2002. V. 11. No4. P. 402–407.
- Routara B.C., Mohanty S.D., Datta S., Bandyopadhyay A., Mahapatra S.S. Sadhana: Academy Proceedings in Engineering Sciences. 2010. V. 25. No 5. P. 619–629.
- 4. *García P., Rivera S., Palacios M., Belzunce J.* Engineering Failure Analysis. 2010. V. 17. No4. P. 771–776.
- 5. *Pantazopoulos G., Vazdirvanidis A.* Journal of Failure Analysis and Prevention. 2008. V. 8. No3. P. 218–222.
- Загиров Н.Н., Иванов Е.В., Ковалева А.А., Аникина В.И. Вестник Магнитогорского государственного технического университета имени Г.И. Носова. 2013. №2 (42). С. 64–68.

- 7. Кузьмина Е.В., Марущак Л.Н., Железняк Л.М., Князев К.В. Металлургия машиностроения. 2014. №6. С. 45–48.
- Кузьмина Е.В., Марущак Л.Н., Железняк Л.М., Латыпова Е.А. Цветные металлы. 2012. №5. С. 93–96.
- Wilborn M.M., Vecchia F.D., Mozetic H., Schneider E.L., Oliveira C.T., Schaeffer L. Ciência & Tecnologia dos Materiais. 2013. V. 25. No 1. P. 14–22.
- García P., Rivera S., Palacios M., Belzunce J. Anales de Mecánica de la Fractura. 2009. V. 29. No 2. P. 664–669.
- Щукин Д.А., Железняк Л.М. Инновации в материаловедении и металлургии: материалы IV Международной интерактивной научно-практической конференции. Екатеринбург: Издательство Уральского университета. 2015. С. 170–173.
- 12. *Gawalowski A*. Zeitschrift für analytische Chemie. 1899. Bd. 38. Heft 12. S. 769–774.
- Korshin G.V., Ferguson J.F., Lancaster A.N. Corrosion Science. 2000. V. 42. No1. P. 53–66.
- 14. *Maas R.P., Patch S.C., Christian A.-M., Coplan M.J.* NeuroToxicology. 2007. V. 28. No5. P. 1023–1031.
- Badawy W.A., El-Egamy S.S., El-Azab A.S. Corrosion Science. 1995. V. 37. No12. P. 1057–1067.
- Kimbrough D.E. Journal (American Water Works Association). 2007. V. 99. No8. P. 70–76.
- Badawy W.A., Al-Kharafi F.M. Corrosion. 1999. V. 55. No 3. P. 268–277.
- El-Sherif R.M., Ismail K.M., Badawy W.A. Electrochimica Acta. 2004. V. 49. No28. P. 5139–5150.
- Kumar S., Sankara Narayanan T.S.N., Manimaran A., Suresh Kumar M. Materials Chemistry and Physics, 2007. V. 106. No1. P. 134–141.
- Chen B.X., Song J., Zhong J.H. Zhuzao. 2006. V. 55. No 5. P. 516–518.
- 21. *Chou T.C.* Journal of Materials Science. 1998. V. 33. No14. P. 3585–3590.
- 22. Ismail K.M., Elsherif R.M., Badawy W.A. Corrosion. 2005. V. 61. No 5. P. 411–419.
- Ismail K.M., El-Egamy S.S., Abdelfatah M. Journal of Applied Electrochemistry. 2001. V. 31. No6. P. 663– 670.
- 24. Constantinides I., Adriaens A., Adams F. Applied Surface Science. 2002. V. 189. No1–2. P. 90–101.
- 25. *Sun Z.M., Barsoum M.W.* Journal of Materials Research. 2005. V. 20. No 5. P. 1087–1089.
- Shahrabi T., Newman R.C., Sieradzki K. Journal of the Electrochemical Society. 1999. V. 140. No2. P. 348–352.
- Тюрин А.Г. Термодинамика химической и электрохимической устойчивости твёрдых сплавов железа, хрома и никеля. Челябинск: Издательство Челябинского государственного университета. 2011. 241 с.
- Брусенцов Ю.А., Пручкин В.А., Филатов И.С. Маркировка материалов электронной техники. Тамбов: Издательство Тамбовского государственного технического университета. 2006. 80 с.
- 29. Латунь и её свойства. Справочник по цветным металлам. URL: http://libmetal.ru/lat/lat%201.htm (дата обращения – 22.VIII.2015).

- Диаграммы состояния двойных металлических систем: справочник. В 3 томах / под ред. Н.П. Лякишева: Т. 1. М.: Машиностроение. 1996. 992 с.; Т. 2. М.: Машиностроение. 1997. 1024 с.; Т. 3. Кн. 1. М.: Машиностроение. 2000. 872 с.; Т. 3. Кн. 2. М.: Машиностроение. 2000. 448 с.
- Phase diagram Web // FactSage Database. URL: http://www.crct.polymtl.ca/fact/documentation (дата обращения – 22.VIII.2015).
- 32. Copper & Copper Alloy Microstructures: Leaded Brasses // Copper Development Association Inc. URL: http:// www.copper.org/resources/properties/microstructure/ lead_brasses.html (дата обращения – 22.VIII.2015).
- van Laar J.J. Zeitschrift für Physikalische Chemie. Stöchiometrie und Verwandtschaftslehre. 1908. Bd. 63. Heft 2. S. 216–253; Bd. 64. Heft 3. S. 257–297.
- van Laar J.J. Chemisch Weekblad. 1908. Bd. 6. S. 1027–1041.
- 35. *Kaufman L., Bernstein H.* Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals. New York: Academic Press. 1970. 334 p.
- Kattner U.R. JOM: The Journal of The Minerals, Metals & Materials Society (TMS). 1997. V. 49. No12. P. 14–19.
- 37. *Lukas H.L., Fries S.G., Sundman B.* Computational Thermodynamics: The CALPHAD Method. Cambridge: Cambridge University Press. 2007. 323 p.
- 38. *Gibbs J.W.* Transactions of the Connecticut Academy of Arts and Sciences. 1875–1878. V. 3. P. 108–248, 343–524.
- Helmholtz H. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin. 1882. S. 22–39, 825–836; 1883. S. 647–665.
- 40. *McNaught A.D., Wilkinson A.* Compendium of Chemical Terminology: The Gold Book. 2nd Edition. Hoboken: Blackwell Science, 1997. 464 p.
- Dinscale A.T. CALPHAD: Computer Coupling of the Phase Diagram and Thermochemistry. 1991. V. 15. No4. P. 317–425.
- 42. Scatchard G., Hamer W.J. Journal of the American Chemical Society. 1935. V. 57. No10. P. 1805–1809.
- 43. Scatchard G., Hamer W.J. Journal of the American Chemical Society. 1935. V. 57. No10. P. 1809–1811.
- 44. *Лаптев Д.М.* Термодинамика металлургических растворов: монография. Челябинск: Металлургия, 1992. 352 с.
- Thomson W. Proceedings of the Cambridge Philosophical Society, Mathematical and Physical Sciences. 1843.
 V. 1. P. 66–71; The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Third Series. 1848. V. 33. No222. P. 309–317.
- 46. *Horstmann A.* Justus Liebig's Annalen der Chemie und Pharmacie. 1873. Bd. 170. Heft 1–2. S. 192–210.
- Horstmann A. Verhandlungen des Naturhistorisch-medizinischen Vereins zu Heidelberg. Neue Folge. 1877. Bd. 1. Heft 5. S. 465–479.
- Михайлов Г.Г., Леонович Б.И., Кузнецов Ю.С. Термодинамика металлургических процессов и систем: монография. М.: Издательский дом МИСиС. 2009. 520 с.

- Hildebrand J.H. Proceedings of the National Academy of Sciences of the United States of America. 1927. V. 13. No5. P. 267–272.
- 50. *Hildebrand J.H.* Journal of the American Chemical Society. 1929. V. 51. No1. P. 66–80.
- 51. *Redlich O., Kister A.T.* Industrial and Engineering Chemistry. 1948. V. 40. No2. P. 345–348.
- 52. *Lewis G.N.* Proceedings of the American Academy of Arts and Sciences. 1907. V. 43. P. 257–294.
- 53. *Lewis G.N.* Journal of the American Chemical Society. 1908. V. 30. No 5. P. 668–683.
- Wohl K. Transactions of the American Institute of Chemical Engineers. 1946. V. 42. P. 215–249; Chemical Engineering Progress. 1953. V. 49. P. 218–219.
- Helfrich G., Wood B. American Mineralogist. 1989.
 V. 74. No9–10. P. 1016–1022.
- 56. *Hwang C.-A., Holste J.C., Hall K.R., Mansoori G.A.* Fluid Phase Equilibria. 1991. V. 62. No3. P. 172–189.
- 57. *Mukhopadhyay B., Basu S., Holdaway M.J.* Geochimica et Cosmochimica Acta. 1993. V. 57. No2. P. 277–283.
- 58. *Kowalski M., Spencer P.J.* Journal of Phase Equilibria. 1993. V. 14. No4. P. 432–438.
- Spencer P.J. CALPHAD: Computer Coupling of the Phase Diagram and Thermochemistry. 1986. V. 10. No2. P. 175–185.
- 60. Xiaowang Z., Hsu T.Y. (Xu Zuyao). Acta Metallurgica. 1989. V. 37. No11. P. 3085–3090.
- *Tyurin A.G., Schrainer A.A.* Protection of Metals. 2007. V. 43. No3. P. 291–297.
- 62. Borggren U., Selleby M. Journal of Phase Equilibria. 2003. V. 24. No2. P. 110–121.
- 63. *Liang H., Chang Y.A.* Journal of Phase Equilibria. 1998. V. 19. No1. P. 25–37.
- Wang C.P., Liu X.J., Ohnuma I., Kainuma R., Ishida K. CALPHAD: Computer Coupling of the Phase Diagram and Thermochemistry. 2000. V. 24. No2. P. 149– 167.
- Onderka B., Zabdyr L.A. Scandinavian Journal of Metallurgy. 2001. V. 30. No 5. P. 320–323.
- 66. *Chakrabarti D.J., Laughlin D.E.* Bulletin of Alloy Phase Diagrams. 1984. V. 5. No 5. P. 503–510.
- 67. *Niemelä J., Effenberg G., Hack K., Spencer P.J.* CALPHAD: Computer Coupling of the Phase Diagram and Thermochemistry. 1986. V. 10. No1. P. 77–89.
- Hayes F.H., Lukas H.L., Effenberg G., Petzow G. Zeitschrift f
 ür Metallkunde. 1986. Bd. 77. Heft 11. S. 749– 754.
- 69. *Teppo O., Niemelä J., Taskinen P.* Thermochimica Acta. 1991. V. 185. No1. P. 155–169.
- David N., Hertz J., Fiorani J.-M. Zeitschrift f
 ür Metallkunde: International Journal of Materials Research. 2003. V. 94. No1. P. 8–11.
- *Kima S.S., Sanders T.H., Jr.* Zeitschrift f
 ür Metallkunde: International Journal of Materials Research. 2003. V. 94. No4. P. 390–395.
- 72. *Srivastava M., Sharma R.C.* Journal of Phase Equilibria. 1993. V. 14. No6. P. 700–709.
- 73. *Jantzen T., Spencer P.J.* CALPHAD: Computer Coupling of the Phase Diagram and Thermochemistry. 1998. V. 22. No 3. P. 417–434.

- Miettinen J., Gandova V., Vassilev G. CALPHAD: Computer Coupling of the Phase Diagram and Thermochemistry. 2010. V. 34. No3. P. 377–383.
- Ansara I., Sundman B. Proceedings of the 10th CODATA International Conference. Editor P. S. Glaeser. Amsterdam: Elsevier Science Publishing. 1987. P. 154–158.
- 76. *Niu Y., Gesmundo F.* Journal of Materials Science & Technology. 2003. V. 19. No6. P. 545–552.
- 77. Бокштейн Б.С., Менделев М.И. Краткий курс физической химии: учебное пособие. Издание 2-е, исправленное. М.: Издательство «ЧеРо». 2001. 232 с.
- Жуховицкий А.А. Журнал физической химии. 1944. Т. 18. №5/6. С. 214–238.
- 79. *Guggenheim E.A.* Transactions of the Faraday Society. 1945. V. 41. P. 150–156.
- Smithells Metals Reference Book. Eighth edition / Eds. Gale W.F., Totemeier T.C. Butterworth-Heinemann, 2003. 2080 p.
- Hallstedt B., Gauckler L.J. CALPHAD: Computer Coupling of the Phase Diagram and Thermochemistry, 2003. V. 27. No2. P. 177–191.
- O'Neill H.S.C. American Mineralogist. 1988. V. 73. No 5/6. P. 470–486.
- 83. *Schramm L., Behr G., Löser W., Wetzig K.* Journal of Phase Equilibria and Diffusion. 2005. V. 26. No 6. P. 605–612.
- Clavaguera-Mora M.T., Touron J.L., Rodríguez-Viejo J., Clavaguera N. Journal of Alloys and Compounds. 2004. V. 377. No1–2. P. 8–16.
- 85. *Hallstedt B., Risold D., Gauckler L.J.* Journal of Phase Equilibria. 1994. V. 15. No5. P. 483–499.
- Shishin D., Decterov S.A. CALPHAD: Computer Coupling of the Phase Diagram and Thermochemistry. 2012. V. 38. P. 59–70
- Boudéne A., Hack K., Mohammad A., Neuschütz D., Zimmermann E. Zeitschrift für Metallkunde. 1992. V. 83. No8. P. 663–668.
- Whangbo M.-H., Koo H.-J. Inorganic Chemistry. 2002. V. 41. No13. P. 3570–3577.
- 89. Wang L.-S., Wu H., Desai S.R., Lou L. Physical Review B: Condensed Matter and Materials Physics. 1996. V. 53. No12. P. 8028–8031.
- Chertihin G.V., Andrews L., Bauschlicher C.W., Jr. The Journal of Physical Chemistry A. 1997. V. 101. No22. P. 4026–4034.
- 91. *Moiseev G.K., Ivanovskii A.L.* Inorganic Materials. 2006. V. 42. No6. P. 632–634.
- 92. Borowiec K., Kolbrecka K. Journal of the Less Common Metals. 1990. V. 163. No1. P. 143–149.
- 93. *Rashad A.M.* Construction and Building Materials. 2013. V. 48. P. 1120–1133.
- 94. Моисеев Г.К., Ватолин Н.А., Маршук Л.А., Ильиных Н.И. Температурные зависимости приведённой энергии Гиббса некоторых неорганических веществ: альтернативный банк данных ASTRA.OWN. Екатеринбург: УрОРАН. 1997. 230 с.
- Moiseev G.K., Vatolin N.A. Russian Journal of Physical Chemistry A: Focus on Chemistry. 1997. V. 71. No3. P. 335–337.

- Cocke D.L., Schennach R., Hossain M.A., Mencer D.E., McWhinney H., Parga J.R., Kesmez M., Gomes J.A.G., Mollah M.Y.A. Vacuum. 2005. V. 79. No1–2. P. 71–83.
- Lefez B., Kartouni K., Lenglet M., Rönnow D., Ribbing C.G. Surface and Interface Analysis. 1994. V. 22. No1–12. P. 451–455.
- Mencer D.E., Hossain M.A., Schennach R., Grady T., McWhinney H., Gomes J.A.G., Kesmez M., Parga J.R., Barr T.L., Cocke D.L. Vacuum. 2004. V. 77. No1. P. 27– 35.
- Mencer D.E., Hossain M.A., Parga J.R., Cocke D.L. Journal of Materials Science Letters. 2002. V. 21. No2. P. 125–127.
- 100. Moiseev G.K., Vatolin N.A. Russian Journal of Physical Chemistry A: Focus on Chemistry. 1998. V. 72. No9. P. 1398–1403.
- 101. Morgan P.E.D., Partin D.E., Chamberland B.L., O'Keeffe M. Journal of Solid State Chemistry. 1996. V. 121. No1. P. 33–37.
- 102. Zhao L., Chen H., Wang Y., Che H., Gunawan P., Zhong Z., Li H., Su F. Chemistry of Materials. 2012. V. 24. No6. P. 1136–1142.
- 103. Pinsard-Gaudart L., Rodríguez-Carvajal J., Gukasov A., Monod P. Physical Review B: Condensed Matter and Materials Physics. 2004. V. 69. No10. P. 104408-1–104408-9.
- 104. Djurek D., Prester M., Drobac D., Ivanda M., Vojta D. Journal of Magnetism and Magnetic Materials. 2015. V. 373. P. 183–187.
- 105. Debbichi L., Marco de Lucas M.C., Pierson J.F., Krüger P. The Journal of Physical Chemistry C. 2012. V. 116. No 18. P. 10232–10237.
- 106. *Debbichi L., Marco de Lucas M.C., Krüger P.* Materials Chemistry and Physics. 2014. V. 148. No1–2. P. 143–148.
- 107. Reppin D., Polity A., Meyer B.K., Shokhovets S. Materials Research Society Proceedings. 2013. V. 1494. P. 165–169.
- 108. *Goll G.* Unconventional superconductors. Springer Tracts in Modern Physics. 2006. V. 214. P. 121–151.
- 109. *Gaojie X., Qirong P., Zengming Z., Zejun D.* Journal of Superconductivity. 2001. V. 14. No4. P. 509–517.
- 110. Teplov M.A., Bakharev O.N., Dooglav A.V., Egorov A.V., Mukhamedshin I.R., de Gronckel H.A.M., Alloul H., Mendels P., Eremina R.M. Journal of Superconductivity. 1999. V. 12. No1. P. 113–115.
- 111. *El-Tantawy Y.A., El-Kholy A.E., Kasem T.S.E.* Corrosion Science. 1978. V. 18. No12. P. 1065–1073.
- 112. *Muroi M., Street R.* Physica C: Superconductivity. 1995.
 V. 248. No 3–4. P. 290–310.
- Tokura Y. Physica C: Superconductivity. 1991. V. 185– 189. No 1. P. 174–179.
- 114. Degterov S.A., Pelton A.D., Jak E., Hayes P.C. Metallurgical and Materials Transactions B. 2007. V. 32. No4. P. 643–657.
- 115. Wriedt H.A. Bulletin of Alloy Phase Diagrams. 1987.V. 8. No2. P. 166–176, 199–200.
- 116. Gondal M.A., Drmosh Q.A., Yamani Z.H., Saleh T.A. Applied Surface Science. 2009. V. 256. No1. P. 298– 304.

- 117. Sun M., Hao W., Wang C., Wang T. Chemical Physics Letters. 2007. V. 443. No4–6. P. 342–346.
- 118. Chen W., Lu Y.H., Wang M., Kroner L., Paul H., Fecht H.-J., Bednarcik J., Stahl K., Zhang Z.L., Wiedwald U., Kaiser U., Ziemann P., Kikegawa T., Wu C.D., Jiang J.Z. The Journal of Physical Chemistry C. 2009. V. 133. No4. P. 1320–1324.
- 119. Bai H., Liu X. Materials Letters. 2010. V. 64. No3. P. 341–343.
- 120. Yadav P.S., Pandey D.K., Agrawal S., Agrawal B.K. Quantum Matter. 2014. V. 3. No1. P. 39–46.
- 121. Yadav P.S., Pandey D.K., Agrawal S., Agrawal B.K. The European Physical Journal Plus. 2015. V. 130. No4. Article 60.
- 122. Nobuteru A. Kinzoku hyōmen gijutsu. 1950. V. 1. No 3–4. P. 21–26.
- 123. Mainar A.R., Leonet O., Bengoechea M., Boyano I., de Meatza I., Kvasha A., Guerfi A., Blázquez J.A. International Journal of Energy Research. 2016. V. 40. No8. P. 1032–1049.
- 124. *Mikić T.K., Milošev I., Pihlar B.* Journal of Applied Electrochemistry. 2005. V. 35. No10. P. 975–984.
- 125. Артемьев С.Р. Вісник Національного технічного університету «ХПІ». Серія: Механіко-технологічні системи та комплекси. 2014. №40(1083). С. 154–160.
- 126. Горбик П.П., Дубровин И.В., Кашин Г.Н. Металлофизика и новейшие технологии. 2016. Т. 38. №3. С. 341–351.
- 127. Номери Х.А.М. Получение и исследование оптических свойств полупроводниковых оксидов ZnO₂ и Zn₂O₃. Дисс. канд. физ.мат. наук. Воронеж. 2011. 128 с.
- 128. Chladil L. Studium jevů limitujících životnost sekundárních článků Ni-Zn. Zkrácená Verze Doktorské Práce. Brno: Vysoké Učení Technické v Brně. 2014. 29 c.
- 129. Wriedt H.A. Bulletin of Alloy Phase Diagrams. 1988.V. 9. No2. P. 106–127.
- 130. Cao M., Hu C., Peng G., Qi Y., Wang E. Journal of the American Chemical Society. 2003. V. 125. No17. P. 4982–4983.
- 131. *Gross S.T.* Journal of the American Chemical Society. 1943. V. 65. No6. P. 1107–1110.
- 132. Barriga C., Maffi S., Bicelli L.P., Malitesta C. Journal of Power Sources. 1991. V. 34. No4. P. 353–367.
- 133. *Kumar S., Sharon M., Jawalekar S.R.* Thin Solid Films. 1991. V. 195. No1–2. P. 273–278.
- 134. *Gavarri J.R., Weigel D.* Oxydes de plomb. I. Journal of Solid State Chemistry. 1975. V. 13. No3. P. 252–257.
- 135. Mallika C., Sreedharan O.M. Materials Letters. 1995.
 V. 22. No 1–2. P. 5–9.
- 136. Morachevskii A.G., Vaisgant Z.I., Ugolkov V.L., Khabachev M.N., Bochagina E.V., Kal'ko O.A., Kuznetsova Yu.S. Russian Journal of Applied Chemistry. 2006. V. 79. No2. P. 241–249.
- 137. *Čančarevic M., Zinkevich M., Aldinger F.* Zeitschrift für Metallkunde: International Journal of Materials Research. 2005. V. 96. No. 8. P. 879–887.
- 138. Wàngyín H., Shìhuá S., Húmĭn R. Wújī yán gōngyè. 2015. V. 47. No11. P. 20–23.

- 139. White W.B., Roy R. Journal of the American Ceramic Society. 1964. V. 47. No 5. P. 242–249.
- 140. Gavrichev K., Bolshakov A., Kondakov D., Khoroshilov A., Denisov S. Journal of Thermal Analysis and Calorimetry. 2008. V. 92. No3. P. 857–863.
- 141. *Lyamkin S.A.* Russian Metallurgy (Metally). 2009. No3. P. 197–200.
- 142. *White W.B., Dachille F., Roy R.* Journal of the American Ceramic Society. 1961, V. 44. No4. P. 170–174.
- 143. *Ferrari A*. Gazetta Chimica Italiana. 1926. No56. P. 630–637.
- 144. Le Blanc M., Eberius E. Zeitschrift für Physikalische Chemie. Abteilung A, Chemische Thermodynamik, Kinetik, Elektrochemie, Eigenschaftslehre. 1932. V. 160. No 1. P. 69–100.
- 145. *Katz T.* Annales de Chimie. Douzième série. 1950. No 5. P. 5–65.
- 146. *Otto E.M.* Journal of the Electrochemical Society. 1966.V. 113. No6. P. 525–527.
- 147. Clark G.L., Schieltz N.C., Quirke T.T. Journal of the American Chemical Society. 1937. V. 59. No11. P. 2305–2308.
- 148. Clark G.L., Tyler W.P. Journal of the American Chemical Society. 1939. V. 61. No1. P. 58–65.
- 149. *Clark G.L., Rowan R.* Journal of the American Chemical Society. 1941. V. 63. No 5. P. 1302–1305.
- 150. *Clark G.L., Rowan R.* Journal of the American Chemical Society. 1941. V. 63. No 5. P. 1305 – 1310.
- 151. *Choudary U.V., Chang Y.A.* Metallurgical and Materials Transactions B. 1976. V. 7. No 4. P. 655–660.
- 152. *Taskinen A., Taskinen P.* Zeitschrift für Metallkunde. 1979. V. 70. No9. P. 594–596.
- 153. *Łabaj J., Sikora B., Fornalczyk A.* Rudy i Metale Nieżelazne. 2005. V. 50. No4. P. 164–168.
- 154. *Gauthier H., Manzini M., Ghali E.* Canadian metallurgical quarterly, 1999. P. 38. No 1. P. 23-32.
- 155. Matsuura H., Hamano T., Tsukihashi F. ISIJ international, 2006. V. 46. No 8. P. 1113–1119.
- 156. *Рузинов Л.П., Гуляницкий Б.С.* Равновесные превращения металлургических реакций. М.: Металлургия, 1975. 416 с.
- 157. Термические константы веществ: база данных URL: http://www.chem.msu.su/cgi-bin/tkv.pl?show=welcome.html>.
- 158. Chase M.W.Jr., Davies C.A., Downey J.R.Jr., Frurip D.J., McDonald R.A., Syverud A.N. Journal of Physical and Chemical Reference Data. 1998. Monograph 9.
- 159. Верятин У.Д., Маширев В.П., Рябцев Н.Г., Тарасов В.И., Рогозкин Б.Д., Коробов И.В. Термодинамические свойства неорганических веществ: справочник / Под ред. Зефирова А.П. – М.: Атомиздат, 1965. – 461 с.
- 160. *Pankratz L.B., Stuve J.M., Gokcen M.A.* Thermodynamic data for mineral technology: handbook. – Bureau of Mines USA, 1984. – 355 p.
- 161. *Charette G.G., Flengas S.N.* Journal of Electrochemical Society. 1968. V. 115. No 8. P. 796–804.
- 162. O'Neill H.S.C., Pownceby M.I. Contributions to Mineralogy and Petrology. 1993. V. 114. No3. P. 296–314.
- 163. Jacob K.T., Fitzner K., Alcock C.B. Metallurgical Transactions B. 1977. V. 8. No 3. P. 451–460.

- 164. *Nikolaychuk P.A., Tyurin A.G.* Inorganic Materials. 2013. V. 49. No5. P. 457–467.
- 165. *Kellogg H.H.* Journal of the Chemical & Engineering Data. 1969. V. 14. No1. P. 41–44.
- 166. *Nuñez L., Pilcher G., Skinner H.A.* The Journal of Chemical Thermodynamics. 1969. V. 1. No1. P. 31–43.
- 167. Clusius K., Harteck P. Zeitschrift für Physikalische Chemie. Abteilung A, Chemische Thermodynamik, Kinetik, Elektrochemie, Eigenschaftslehre. 1928. V. 134. No 1. P. 243–263.
- 168. *Hu J.-H., Johnston H.L.* Journal of the American Chemical Society. 1953. V. 75. No10. P. 2471–2473.
- 169. *Millar R.W.* Journal of the American Chemical Society. 1929. V. 51. No1. P. 215–222.
- 170. *Maier C.G.* Journal of the American Chemical Society. 1929. V. 51. No1. P. 194–207.
- 171. *Allmand A.J.* Journal of the Chemical Society, Transactions. 1909. V. 95. P. 2151–2157.
- 172. *Allmand A.J.* Journal of the Chemical Society, Transactions. 1911. V. 99. P. 840–845.
- 173. Feitknecht W., Schindler P. Pure and Applied Chemistry. 1963. V. 6. No2. P. 130–199.
- 174. Anthrop D.F., Searcy A.W. The Journal of Physical Chemistry. 1964. V. 68. No8. P. 2335–2341.
- 175. Bodenstein M. Zeitschrift f
 ür Elektrochemie und angewandte physikalische Chemie. 1940. V. 46. No3. P. 132–134.
- 176. *Hirschwald W., Stolze F., Stranski I.N.* Zeitschrift für Physikalische Chemie. Neue Folge. 1964. V. 42. No 1–2. P. 96–111.
- 177. *Kitchener J.A., Ignatowicz S.* Transactions of the Faraday Society. 1951. V. 47. P. 1278–1286.
- 178. Maier C.G., Parks G.S., Anderson C.T. Journal of the American Chemical Society. 1926. V. 48. No10. P. 2564–2576.
- 179. *Maier C.G., Ralston O.C.* Journal of the American Chemical Society. 1926. V. 48. No2. P. 364–374.
- 180. *Truesdale E.C., Waring R.K.* Journal of the American Chemical Society. 1941. V. 63. No6. P. 1610–1621.
- 181. Peppler R.B., Newman E.S. Journal of Research of the National Bureau of Standards. 1951. V. 46. No2. P. 121–123.
- 182. Schindler P., Althaus H., Feitknecht W. Helvetica Chimica Acta. 1964. V. 47. No4. P. 982 – 991.
- 183. *Hills S.* Journal of the Electrochemical Society. 1961.
 V. 108. No 8. P. 810–811.
- 184. Wagman D.D., Evans W.H., Parker V.B., Schumm R.H., Halow I.B., Sylvia M., Churney K.L., Nuttal R.L. Journal of Physical and Chemical Reference Data.1982. V. 11. Suppl. 2.
- 185. Schweitzer G.K., Pesterfield L.L. The aqueous chemistry of the elements. Oxford: Oxford University Press. 2010. 433 p.
- 186. Speight J. Lange's Handbook of Chemistry, 16th Edition. New York: McGraw-Hill Education. 2005. 1623 p.
- 187. Risold D., Nagata J.-I., Suzuki R.O. Journal of Phase Equilibria. 1998. V. 19. No 3. P. 213–233.
- 188. Fried F. Zeitschrift für Physikalische Chemie. Stöchiometrie und Verwandtschaftslehre. 1926. Bd. 123. Heft 4. S. 406–428.

- Glasstone S. Journal of the Chemical Society, Transactions. 1921. V. 119. P. 1914–1927.
- 190. *Günther P.* Zeitschrift für Elektrochemie und angewandte physikalische Chemie. 1917. V. 23. No13–14. P. 197–199.
- 191. Treadwell W.D. Zeitschrift für Elektrochemie und angewandte physikalische Chemie. 1916. V. 22. No21–22. P. 414–421.
- 192. Marshall A.L., Bruzs B. The Journal of Physical Chemistry. 1924. V. 29. No9. P. 1184–1186.
- 193. *Millar R.W.* Journal of the American Chemical Society. 1929. V. 51. No 1. P. 205–214.
- 194. Smith D.F., Woods H.K. Journal of the American Chemical Society. 1923. V. 45. No 11. P. 2632–2637.
- 195. *Spencer H.M., Mote J.H.* Journal of the American Chemical Society. 1932. V. 54. No12. P. 4618–4624.
- 196. *King E.G.* Journal of the American Chemical Society. 1958. V. 80. No 10. P. 2400–2401.
- 197. Andrews L.V., Brown D.J. Journal of the American Chemical Society. 1934. V. 56. No 2. P. 388–390.
- 198. Debray H. Comptes rendus hebdomadaires des séances de l'Académie des Sciences. 1878. V. 86. P. 513–517.
- 199. *Glasstone S.* Journal of the Chemical Society, Transactions. 1922. V. 121. P. 1456–1469.
- 200. *Reinders W., Hamburger L.* Zeitschrift für anorganische Chemie. 1914. V. 89. No1. P. 71–96.
- 201. Leciejewicz J. Acta Crystallographica. 1961. V. 14. No 12. P. 1304.
- 202. Beck W.H., Singh K.P., Wynne-Jones W.F.K. Transactions of the Faraday Society. 1959. V. 55. P. 331–338.
- 203. Craig D.N., Vinal G.W. Journal of Research of the National Bureau of Standards. 1940. V. 24. No4. P. 475– 490.
- 204. Duisman J.A., Giauque W.F. The Journal of Physical Chemistry. 1968. V. 72. No2. P. 562–573.
- 205. *Krustinsons J.* Zeitschrift für Elektrochemie und angewandte physikalische Chemie. 1934. V. 40. No5. P. 246–248.
- 206. *Mixter W.G.* American Journal of Science. Fourth Series. 1909. V. 27. No 5. P. 393–397.
- 207. *Otto E.M.* Journal of the Electrochemical Society. 1966. V. 113. No6. P. 525–527.
- 208. Tscheltzow I.M. Comptes rendus hebdomadaires des séances de l'Académie des Sciences. 1885. V. 100. P. 1458–1460.
- 209. Vosburgh W.C., Craig D.N. Journal of the American Chemical Society. 1929. V. 51. No7. P. 2009–2019.
- 210. *Wescott E.W.* Journal of the American Chemical Society. 1920. V. 42. No 7. P. 1335–1349.
- *Третьяков Ю.Д.* Термодинамика ферритов. Л.: Химия, 1967. 305 с.
- 212. Craig B.D. Fundamental Aspects of Corrosion Films in Corrosion Science. New York: Springer-Verlag. 1991. 192 p.
- 213. *Kaesche H.* Corrosion of Metals: Physicochemical Principles and Current Problems. In: Engineering Materials and Processes. Berlin: Springer-Verlag, 2003. 594 p.
- 214. *Revie R., Uhlig H.* Corrosion and corrosion control. An introduction to corrosion science and engineering. Wiley. 2008.

- 215. *Revie R*. Uhlig's Corrosion Handbook. Hoboken: Wiley. 2011. 1296 p.
- 216. Brimblecombe P. Air Composition & Chemistry. Second Edition. Cambridge: Cambridge University Press. 1996. 253 p.
- 217. Шарлай Е.В. Особенности электрохимического поведения системы медь-раствор гидроксида калия в области температур 295–320 К: автореф. дисс. канд. хим. наук. – Челябинск: Изд-во ЮурГУ, 2008. – 19 с.
- 218. Delahay P., Pourbaix M., van Rysselberghe P. Journal of Chemical Education. 1950. V. 27. No12. P. 683–688.
- 219. Справочник химика / под ред. Б.П. Никольского. М.-Л.: Химия, 1964. Т. 3. 1008 с.
- 220. *Kiss L.* Kinetics of electrochemical metal dissolution. In: Studies in Physical and Theoretical Chemistry. V. 47. Amsterdam: Elsevier. 1988. 260 p.
- 221. Pourbaix diagrams / Substances & Technologies. URL: http://www.substech.com/dokuwiki/doku. php?id=pourbaix diagrams>.
- 222. *Garrels R.M., Christ C.L.* Solutions, Minerals and Equilibria. New York : Harper & Row, 1965. 368 p.
- 223. *McCafferty E*. Introduction to Corrosion Science. New York: Springer-Verlag. 2010. 302 p.
- 224. *Huang H.-H.* Metals. 2016. V. 6. No1. Article 23. P. 1–30.
- 225. Advances in Corrosion Engineering (Web) // NPTEL Web Courses. URL: < http://nptel.ac.in/courses/113108051>.
- 226. *Schon T., Heidendael M.* Wasserstoffbildung durch Metallkorrosion. In: Berichte des Forschungszentrums Jülich. No. 3495. Jülich: Institut für Sicherheitsforschung und Reaktortechnik. 86 p.
- 227. *Kinniburgh D.G., Cooper D.M.* Environmental Science & Technology. 2004. V. 38. No13. P. 3641–3648.
- 228. Anderko A., Sanders S.J., Young R.D. Corrosion. 1997. V. 53. No 1. P. 43–53.
- 229. Angus J.C., Lu B., Zappia M.J. Journal of applied electrochemistry. 1987. V. 17. No 1. P. 1–21.
- 230. Nagypál I. Talanta. 1982. V. 29. No6. P. 473-477.
- 231. Pereira C.F., Alcalde M., Villegas R., & Vale J. Journal of Chemical Education. 2007. V. 84. No 3. P. 520–525.
- 232. Anderko A. Shreir's Corrosion. V. 2 / Eds. J. A. Richardson et al. Amsterdam: Elsevier. 2010. P. 1585–1629.
- 233. *Eriksson G*. Analytica Chimica Acta, 1979. V. 112. No4. P. 375 – 383.
- 234. *Angus J.C., Angus C.T.* Journal of the Electrochemical Society, 1985. V. 132. No5. P. 1014–1019.
- 235. Rojas-Hernández A., Ramírez M.T., Ibáñez J.G., & González I. Journal of The Electrochemical Society. 1991. V. 138. No 2. P. 365–371.
- 236. Liu H., Zhang C. Calphad. 2001. V. 25. No 3. P. 363-380.
- 237. *Brook P.A.* Corrosion Science. 1971. V. 11. No6. P. 389–396.
- 238. *Salhi R*. Iranian Journal of Chemistry and Chemical Engineering. 2005. V. 24. No3. P. 29–39.
- 239. Beverskog B., Puigdomenech I. Journal of the Electrochemical Society. 1997. V. 144. No10. P. 3476–3483.
- 240. *Tamilmania S., Huanga W., Raghavana S., Small R.* Journal of the Electrochemical Society. 2002. V. 149. No12. P. G638–G642.

- 241. *Cubicciotti D*. Corrosion, 1988. V. 44. No12. P. 875– 880.
- 242. Beverskog B., Puigdomenech I. Pourbaix diagrams for the system copper-chlorine at 5–100 °C SKI Rapport 98:19. 1998. 35 p.
- 243. Osseo-Asake K., Mishra K.K. Journal of Electronic Materials. 1996. V. 25. No10. P. 1599–1607.
- 244. Muñoz-Portero M.J., García-Antón J., Guiñón J.L., & Pérez-Herranz V. Corrosion. 2004. V. 60. No 8. P. 749– 756.
- 245. *Hoar T.P., Rothwell G.P.* Electrochimica Acta. 1970. V. 15. No6. P. 1037–1045.
- 246. *Bianchi G., Longhi P.* Corrosion Science. 1973. V. 13. No11. P. 853–864.
- 247. *Tromans D.* Journal of the Electrochemical Society. 1998. V. 145. No 3. P. L42–L45.
- 248. Alfantazi A.M., Ahmed T.M., Tromans D. Materials & Design, 2009. V. 30. No7. P. 2425–2430.
- 249. *Mattsson E.* British Corrosion Journal. 1980. V. 15. No 1. P. 6–13.
- 250. *Glasby G.P., Schulz H.D.* Aquatic Geochemistry. 1999. V. 5. No3. P. 227–248.
- 251. *Nila C., González I.* Hydrometallurgy. 1996. V. 42. No 1. P. 63–82.
- 252. Bartonicek R., Lukasovska M. Corrosion Science. 1969.V. 9. No 1. P. 35–42.
- 253. *Aksu S., Doyle F.M.* Electrochemistry in Mineral and Metal Processing, Pennington, NJ: The Electrochemical Society. 2000. P. 258–269.
- 254. Yagi S. Potential-pH Diagrams for Oxidation-State Control of Nanoparticles Synthesized via Chemical Reduction. In: Thermodynamics – Physical Chemistry of Aqueous Systems / Ed. J. C. Moreno-Piraján. Rijeka: InTech. 2011. P. 223–240.
- 255. Николайчук П.А., Тюрин А.Г., Канатьева И.И. Уточнённая диаграмма Пурбе для меди // Современные проблемы теоретической и экспериментальной химии: Межвузовский сборник научных трудов VII Всероссийской конференции молодых учёных с международным участием. Саратов: ООО Издательство «КУБиК». 2010. С. 287–291.
- 256. Preis W., Gamsjäger H. Journal of Chemical Thermodynamics. 2001. V. 33. No7. P. 803–819.
- 257. Beverskog B., Puigdomenech I. Corrosion Science. 1997. V. 39. No 1. P. 107–114.
- 258. Delahay P., Pourbaix M., Van Rysselberghe P. Journal of The Electrochemical Society. 1951. V. 98. No3. P. 101–105.
- 259. Thomas S., Birbilis N., Venkatraman M.S., Cole I.S. Corrosion. 2012. V. 68. No1. P. 015009-1–015009-9.
- 260. Johnson H.E., Leja J. Journal of the Electrochemical Society. 1965. V. 112. No 6. P. 638–641.
- 261. *Al-Hinai A.T., Al-Hinai M.H., Dutta J.* Materials Research Bulletin. 2014. V. 49. P. 645–650.
- 262. Ding Z.Y., Chen, Q.Y., Yin Z.L., & Kui L.I.U. Transactions of Nonferrous Metals Society of China. 2013. V. 23. No 3. C. 832-840.
- 263. Николайчук П.А., Тюрин А.Г. Уточнённая диаграмма Пурбе для цинка // Современные проблемы теоретической и экспериментальной химии: Межвузовский

сборник научных трудов VIII Всероссийской конференции молодых учёных с международным участием. Саратов: ООО Издательство «КУБиК». 2011. С. 226–230.

- 264. Delahay P., Pourbaix M., van Rysselberghe P. Journal of the Electrochemical Society. 1951. V. 98. No2. P. 57–64.
- 265. *Pourbaix M., van Myulder J., de Zoubov N.* Centre belge d'étude de la corrosion. 1963.
- 266. Takeno N. Atlas of Eh-pH diagrams: Intercomparison of thermodynamic databases / Geological survey of Japan. Open file report №419. National Institute of Advanced Industrial Science and Technology, 2005. URL: <www.gsj.jp/GDB/openfile/files/no0419/openfile419e.pdf>.
- 267. *Brookins D.G.* Eh–pH diagrams for elements from Z = 40 to Z = 52: Application to the Oklo natural reactor, Gabon, *Chemical Geology*. 1978. 23(1–4). P. 325–342.
- 268. Brookins D.G. Application of Eh-pH diagrams to problems of retention and/or migration of fissiogenic elements at Oklo, International Atomic Energy Agency, Technical committee meeting on natural fission reactors. Vienna. 1979.
- 269. *Brookins D.G.* Eh–pH diagrams for geochemistry. Berlin: Springer. 1987.
- 270. FactSage EpH–Web. URL: http://www.sgte.org/ephweb.php>.
- 271. THERMEXPERT Potential pH diagram generator / Argentum Solutions, Inc. – URL: http://www.argentumsolutions.com/cgi-bin/thermexpert.
- 272. SUPCRT / Prediction Central. URL: http://www.predcent.org/download/supcrt>.
- 273. *Johnson J.W., Oelkers E.H., Helgeson H.C.* Computers & Geosciences. 1992. V. 18. No 7. P. 899–947.
- 274. The Geochemist's Workbench (GWB). Rockware: Earth Science and GIS Software. – URL: http://www.rockware.com/product/overview.php?id=132>.
- 275. JNC-TDB. Japan Nuclear Cycle Organization. URL: http://migrationdb.jnc.go.jp.

- 276. ZZ-HATCHES 20: Database for radiochemical modeling / Nuclear Energy Agency. – URL: http://www.oecd-nea.org/tools/abstract/detail/nea-1210>.
- 277. PHREEQC-2: A Computer Program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations / USGS. – URL: http://www.wbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc>.
- 278. ChemEQL. URL: http://www.eawag.ch/research_e/surf/Researchgroups/sensors_and_analytic/chemeql.html>.
- 279. PhreePlot. URL: http://www.phreeplot.org>.
- 280. Materials Project Pourbaix Diagrams. URL: https://materialsproject.org/#apps/pourbaixdiagram>.
- 281. Chemical Equilibrium Diagrams. URL: https://sites.google.com/site/chemdiagr>.
- 282. SOLGASWATER program.-URL:<http://158.227.5.164/ Chemical_Diagrams/html/ISP_Solgaswater.htm>.
- 283. *Eriksson G*. Analytica Chimica Acta. 1979. V. 112. No 4. P. 375–383.
- 284. Ingri N., Kakolowicz W., Sillén L.G., Warnqvist B. Talanta. 1967. V. 14. No 11. P. 1261–1286.
- 285. Справочник по электрохимии / под ред. А.М. Сухотина. Л.: Химия, 1981. 488 с.
- 286. Bard A.J., Parsons R., Jordan J. Standard potentials in aqueous solutions. New York: Marcel Dekker Inc. 1985. 848 p.
- 287. Vanýsek P. CRC Handbook of Chemistry and Physics, 95th Edition; Ed. W. M. Haynes. CRC Press. 2014. 2704 p.
- 288. Charlot G., Collumeau M.A., Marchon M.J.C. Oxidation-Reduction Potentials of Inorganic Substances in Aqueous Solution. IUPAC – Selected Constants. London: Butterworths. 1971. 73 p.
- 289. Hayes P.C. Process Principles in Minerals and Materials Production. Queensland: Hayes Publishing. 1993. 730 p.
- 290. *Blackman A., Gahan L.* Aylward and Findlay's SI Chemical Data, 7th Edition. New York: Wiley. 2014. 240 p.